Planetarium Presenters Trying To Explain To A Busload Of 4th Graders How Incomprehensibly Vast Space

planetarium presenters trying to explain to a busload of 4th graders how incomprehensibly vast space is

More Posts from Primordialbitch and Others

4 years ago

Newly discovered Amazon rock art show the rainforest's earliest inhabitants living with giant Ice Age animals

Newly Discovered Amazon Rock Art Show The Rainforest's Earliest Inhabitants Living With Giant Ice Age

Amazonian rock art newly discovered by researchers provides further proof the rainforest’s earliest inhabitants lived alongside now-extinct giant Ice Age animals.

The thousands of pictures are among the oldest depictions of people interacting with the huge creatures, including mastodons. Usually the only clues about their appearance are skeletal remains.

This is one of the largest collections of rock art found in South America. The recorded drawings, likely first made around 12,600 and 11,800 years ago, are on three rock shelters on hills in the Colombian Amazon. The paintings, identified during landscape surveys, also depict geometric shapes, human figures, and handprints, as well as hunting scenes and people interacting with plants, trees and savannah animals. The vibrant red pictures were produced over a period of hundreds, or possibly thousands, of years. Read more.

5 years ago

TRAILER: “AFTER WE LEAVE” (2019)

Written and Directed by Aleem Hossain, “After We Leave” is a gritty sci-fi feature film about a man who has a once-in-a-lifetime chance to emigrate off Earth… only if he can find his estranged wife and convince her to come with him.

Winner: Best Feature Film at Sci Fi London Winner: Best Director at Berlin Sci Fi Film Fest


Tags
5 years ago

Hubble fortuitously discovers a new galaxy in the cosmic neighborhood

Astronomers using the NASA/ESA Hubble Space Telescope to study some of the oldest and faintest stars in the globular cluster NGC 6752 have made an unexpected finding. They discovered a dwarf galaxy in our cosmic backyard, only 30 million light-years away. The finding is reported in the journal Monthly Notices of the Royal Astronomical Society: Letters.

Hubble Fortuitously Discovers A New Galaxy In The Cosmic Neighborhood

An international team of astronomers recently used the NASA/ESA Hubble Space Telescope to study white dwarf stars within the globular cluster NGC 6752. The aim of their observations was to use these stars to measure the age of the globular cluster, but in the process they made an unexpected discovery.

Keep reading

5 years ago

10 Things Einstein Got Right

One hundred years ago, on May 29, 1919, astronomers observed a total solar eclipse in an ambitious  effort to test Albert Einstein’s general theory of relativity by seeing it in action. Essentially, Einstein thought space and time were intertwined in an infinite “fabric,” like an outstretched blanket. A massive object such as the Sun bends the spacetime blanket with its gravity, such that light no longer travels in a straight line as it passes by the Sun.

This means the apparent positions of background stars seen close to the Sun in the sky – including during a solar eclipse – should seem slightly shifted in the absence of the Sun, because the Sun’s gravity bends light. But until the eclipse experiment, no one was able to test Einstein’s theory of general relativity, as no one could see stars near the Sun in the daytime otherwise.

The world celebrated the results of this eclipse experiment— a victory for Einstein, and the dawning of a new era of our understanding of the universe.

General relativity has many important consequences for what we see in the cosmos and how we make discoveries in deep space today. The same is true for Einstein’s slightly older theory, special relativity, with its widely celebrated equation E=mc². Here are 10 things that result from Einstein’s theories of relativity:

image

1. Universal Speed Limit

Einstein’s famous equation E=mc² contains “c,” the speed of light in a vacuum. Although light comes in many flavors – from the rainbow of colors humans can see to the radio waves that transmit spacecraft data – Einstein said all light must obey the speed limit of 186,000 miles (300,000 kilometers) per second. So, even if two particles of light carry very different amounts of energy, they will travel at the same speed.

This has been shown experimentally in space. In 2009, our Fermi Gamma-ray Space Telescope detected two photons at virtually the same moment, with one carrying a million times more energy than the other. They both came from a high-energy region near the collision of two neutron stars about 7 billion years ago. A neutron star is the highly dense remnant of a star that has exploded. While other theories posited that space-time itself has a “foamy” texture that might slow down more energetic particles, Fermi’s observations found in favor of Einstein.

image

2. Strong Lensing

Just like the Sun bends the light from distant stars that pass close to it, a massive object like a galaxy distorts the light from another object that is much farther away. In some cases, this phenomenon can actually help us unveil new galaxies. We say that the closer object acts like a “lens,” acting like a telescope that reveals the more distant object. Entire clusters of galaxies can be lensed and act as lenses, too.

When the lensing object appears close enough to the more distant object in the sky, we actually see multiple images of that faraway object. In 1979, scientists first observed a double image of a quasar, a very bright object at the center of a galaxy that involves a supermassive black hole feeding off a disk of inflowing gas. These apparent copies of the distant object change in brightness if the original object is changing, but not all at once, because of how space itself is bent by the foreground object’s gravity.

Sometimes, when a distant celestial object is precisely aligned with another object, we see light bent into an “Einstein ring” or arc. In this image from our Hubble Space Telescope, the sweeping arc of light represents a distant galaxy that has been lensed, forming a “smiley face” with other galaxies.

image

3. Weak Lensing

When a massive object acts as a lens for a farther object, but the objects are not specially aligned with respect to our view, only one image of the distant object is projected. This happens much more often. The closer object’s gravity makes the background object look larger and more stretched than it really is. This is called “weak lensing.”

Weak lensing is very important for studying some of the biggest mysteries of the universe: dark matter and dark energy. Dark matter is an invisible material that only interacts with regular matter through gravity, and holds together entire galaxies and groups of galaxies like a cosmic glue. Dark energy behaves like the opposite of gravity, making objects recede from each other. Three upcoming observatories – Our Wide Field Infrared Survey Telescope, WFIRST, mission, the European-led Euclid space mission with NASA participation, and the ground-based Large Synoptic Survey Telescope — will be key players in this effort. By surveying distortions of weakly lensed galaxies across the universe, scientists can characterize the effects of these persistently puzzling phenomena.

Gravitational lensing in general will also enable NASA’s James Webb Space telescope to look for some of the very first stars and galaxies of the universe.

image

4. Microlensing

So far, we’ve been talking about giant objects acting like magnifying lenses for other giant objects. But stars can also “lens” other stars, including stars that have planets around them. When light from a background star gets “lensed” by a closer star in the foreground, there is an increase in the background star’s brightness. If that foreground star also has a planet orbiting it, then telescopes can detect an extra bump in the background star’s light, caused by the orbiting planet. This technique for finding exoplanets, which are planets around stars other than our own, is called “microlensing.”

Our Spitzer Space Telescope, in collaboration with ground-based observatories, found an “iceball” planet through microlensing. While microlensing has so far found less than 100 confirmed planets,  WFIRST could find more than 1,000 new exoplanets using this technique.

image

5. Black Holes

The very existence of black holes, extremely dense objects from which no light can escape, is a prediction of general relativity. They represent the most extreme distortions of the fabric of space-time, and are especially famous for how their immense gravity affects light in weird ways that only Einstein’s theory could explain.

In 2019 the Event Horizon Telescope international collaboration, supported by the National Science Foundation and other partners, unveiled the first image of a black hole’s event horizon, the border that defines a black hole’s “point of no return” for nearby material. NASA’s Chandra X-ray Observatory, Nuclear Spectroscopic Telescope Array (NuSTAR), Neil Gehrels Swift Observatory, and Fermi Gamma-ray Space Telescope all looked at the same black hole in a coordinated effort, and researchers are still analyzing the results.

image

6. Relativistic Jets

This Spitzer image shows the galaxy Messier 87 (M87) in infrared light, which has a supermassive black hole at its center. Around the black hole is a disk of extremely hot gas, as well as two jets of material shooting out in opposite directions. One of the jets, visible on the right of the image, is pointing almost exactly toward Earth. Its enhanced brightness is due to the emission of light from particles traveling toward the observer at near the speed of light, an effect called “relativistic beaming.” By contrast, the other jet is invisible at all wavelengths because it is traveling away from the observer near the speed of light. The details of how such jets work are still mysterious, and scientists will continue studying black holes for more clues. 

image

7. A Gravitational Vortex

Speaking of black holes, their gravity is so intense that they make infalling material “wobble” around them. Like a spoon stirring honey, where honey is the space around a black hole, the black hole’s distortion of space has a wobbling effect on material orbiting the black hole. Until recently, this was only theoretical. But in 2016, an international team of scientists using European Space Agency’s XMM-Newton and our Nuclear Spectroscopic Telescope Array (NUSTAR) announced they had observed the signature of wobbling matter for the first time. Scientists will continue studying these odd effects of black holes to further probe Einstein’s ideas firsthand.

Incidentally, this wobbling of material around a black hole is similar to how Einstein explained Mercury’s odd orbit. As the closest planet to the Sun, Mercury feels the most gravitational tug from the Sun, and so its orbit’s orientation is slowly rotating around the Sun, creating a wobble.

image

 8. Gravitational Waves

Ripples through space-time called gravitational waves were hypothesized by Einstein about 100 years ago, but not actually observed until recently. In 2016, an international collaboration of astronomers working with the Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors announced a landmark discovery: This enormous experiment detected the subtle signal of gravitational waves that had been traveling for 1.3 billion years after two black holes merged in a cataclysmic event. This opened a brand new door in an area of science called multi-messenger astronomy, in which both gravitational waves and light can be studied.

For example, our telescopes collaborated to measure light from two neutron stars merging after LIGO detected gravitational wave signals from the event, as announced in 2017. Given that gravitational waves from this event were detected mere 1.7 seconds before gamma rays from the merger, after both traveled 140 million light-years, scientists concluded Einstein was right about something else: gravitational waves and light waves travel at the same speed.

image

9. The Sun Delaying Radio Signals

Planetary exploration spacecraft have also shown Einstein to be right about general relativity. Because spacecraft communicate with Earth using light, in the form of radio waves, they present great opportunities to see whether the gravity of a massive object like the Sun changes light’s path.  

In 1970, our Jet Propulsion Laboratory announced that Mariner VI and VII, which completed flybys of Mars in 1969, had conducted experiments using radio signals — and also agreed with Einstein. Using NASA’s Deep Space Network (DSN), the two Mariners took several hundred radio measurements for this purpose. Researchers measured the time it took for radio signals to travel from the DSN dish in Goldstone, California, to the spacecraft and back. As Einstein would have predicted, there was a delay in the total roundtrip time because of the Sun’s gravity. For Mariner VI, the maximum delay was 204 microseconds, which, while far less than a single second, aligned almost exactly with what Einstein’s theory would anticipate.

In 1979, the Viking landers performed an even more accurate experiment along these lines. Then, in 2003 a group of scientists used NASA’s Cassini Spacecraft to repeat these kinds of radio science experiments with 50 times greater precision than Viking. It’s clear that Einstein’s theory has held up! 

image

10. Proof from Orbiting Earth

In 2004, we launched a spacecraft called Gravity Probe B specifically designed to watch Einstein’s theory play out in the orbit of Earth. The theory goes that Earth, a rotating body, should be pulling the fabric of space-time around it as it spins, in addition to distorting light with its gravity.

The spacecraft had four gyroscopes and pointed at the star IM Pegasi while orbiting Earth over the poles. In this experiment, if Einstein had been wrong, these gyroscopes would have always pointed in the same direction. But in 2011, scientists announced they had observed tiny changes in the gyroscopes’ directions as a consequence of Earth, because of its gravity, dragging space-time around it.

10 Things Einstein Got Right

BONUS: Your GPS! Speaking of time delays, the GPS (global positioning system) on your phone or in your car relies on Einstein’s theories for accuracy. In order to know where you are, you need a receiver – like your phone, a ground station and a network of satellites orbiting Earth to send and receive signals. But according to general relativity, because of Earth’s gravity curving spacetime, satellites experience time moving slightly faster than on Earth. At the same time, special relativity would say time moves slower for objects that move much faster than others.

When scientists worked out the net effect of these forces, they found that the satellites’ clocks would always be a tiny bit ahead of clocks on Earth. While the difference per day is a matter of millionths of a second, that change really adds up. If GPS didn’t have relativity built into its technology, your phone would guide you miles out of your way!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
2 years ago
This First Image From NASA’s James Webb Space Telescope Is The Deepest And Sharpest Infrared Image

This first image from NASA’s James Webb Space Telescope is the deepest and sharpest infrared image of the distant universe to date. Known as Webb’s First Deep Field, this image of galaxy cluster SMACS 0723 is overflowing with detail. Thousands of galaxies – including the faintest objects ever observed in the infrared – have appeared in Webb’s view for the first time. This slice of the vast universe covers a patch of sky approximately the size of a grain of sand held at arm’s length by someone on the ground.

5 years ago

Tabby's Star, not an Alien megastructure is the cause of dimming of the 'most mysterious star in the universe'

Tabby's Star, Not An Alien Megastructure Is The Cause Of Dimming Of The 'most Mysterious Star In The

A team of more than 200 researchers, including Penn State Department of Astronomy and Astrophysics Assistant Professor Jason Wright and led by Louisiana State University’s Tabetha Boyajian, is one step closer to solving the mystery behind the “most mysterious star in the universe.” KIC 8462852, or “Tabby’s Star,” nicknamed after Boyajian, is otherwise an ordinary star, about 50 percent bigger and 1,000 degrees hotter than the Sun, and about than 1,000 light years away. However, it has been inexplicably dimming and brightening sporadically like no other. Several theories abound to explain the star’s unusual light patterns, including that an alien megastructure is orbiting the star.

Keep reading


Tags
1 year ago
Motion Is Curved And All Curvature Is Spiral" - Walter Russell

Motion is Curved and All Curvature is Spiral" - Walter Russell

4 years ago

10 Amazing Space Discoveries by the World’s Largest Flying Observatory

10 Amazing Space Discoveries By The World’s Largest Flying Observatory

On the night of May 26, 2010, the Stratospheric Observatory for Infrared Astronomy, or SOFIA, the world’s largest flying observatory, first peered into the cosmos. Its mission: to study celestial objects and astronomical phenomena with infrared light. Many objects in space emit almost all their energy at infrared wavelengths. Often, they are invisible when observed in ordinary, visible light. Over the last decade, the aircraft’s 106-inch telescope has been used to study black holes, planets, galaxies, star-forming nebulas and more! The observations have led to major breakthroughs in astronomy, revolutionizing our understanding of the solar system and beyond. To celebrate its 10 years of exploration, here’s a look at the top 10 discoveries made by our telescope on a plane:

The Universe’s First Type of Molecule

10 Amazing Space Discoveries By The World’s Largest Flying Observatory

Scientists believe that around 100,000 years after the big bang, helium and hydrogen combined to make a molecule called helium hydride. Its recent discovery confirms a key part of our basic understanding of the early universe.

A New View of the Milky Way

10 Amazing Space Discoveries By The World’s Largest Flying Observatory

More than a pretty picture, this panorama of cosmic scale reveals details that can help explain how massive stars are born and what’s feeding our Milky Way galaxy’s supermassive black hole.

When Planets Collide

10 Amazing Space Discoveries By The World’s Largest Flying Observatory

A double-star system that is more than 300 light-years away likely had an extreme collision between two of its rocky planets. A similar event in our own solar system may have formed our Moon.

How A Black Hole Feasts

10 Amazing Space Discoveries By The World’s Largest Flying Observatory

Fear not, the dark, my friend. And let the feast begin! Magnetic fields in the Cygnus A galaxy are trapping material where it is close enough to be devoured by a hungry black hole.

Somewhere Like Home

10 Amazing Space Discoveries By The World’s Largest Flying Observatory

The planetary system around Epsilon Eridani, a star located about 10 light-years away, has an architecture remarkably similar to our solar system. What’s more, its central star is a younger, fainter version of our Sun.

A Quiet Place

10 Amazing Space Discoveries By The World’s Largest Flying Observatory

Black holes in many galaxies are actively consuming material, but our Milky Way galaxy’s central black hole is relatively quiet. Observations show magnetic fields may be directing material around, not into, the belly of the beast.

The Great Escape

10 Amazing Space Discoveries By The World’s Largest Flying Observatory

Ever wonder how material leaves a galaxy? The wind flowing from the center of the Cigar Galaxy is so strong it’s pulling a magnetic field — and the mass of 50 to 60 million Suns — with it.

Exploding Star, New Worlds

10 Amazing Space Discoveries By The World’s Largest Flying Observatory

What happens when a star goes boom? It turns out that supernova explosions can produce a substantial amount of material from which planets like Earth can form.

Stellar Sibling Rivalry

10 Amazing Space Discoveries By The World’s Largest Flying Observatory

They say siblings need time and space to grow, but here’s one that really needs some room. A newborn star in the Orion Nebula is clearing a bubble of space around it, preventing any new luminous family members from forming nearby.

Clues to Life’s Building Blocks

10 Amazing Space Discoveries By The World’s Largest Flying Observatory

Radiation from stars is making organic molecules in nebula NGC 7023, also known as the Iris Nebula, larger and more complex. The growth of these molecules is one of the steps that could lead to the emergence of life under the right circumstances.

SOFIA is a modified Boeing 747SP aircraft that allows astronomers to study the solar system and beyond in ways that are not possible with ground-based telescopes. Find out more about the mission at www.nasa.gov/SOFIA.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

5 years ago

Faint starlight in Hubble images reveals distribution of dark matter

Astronomers using data from the NASA/ESA Hubble Space Telescope have employed a revolutionary method to detect dark matter in galaxy clusters. The method allows astronomers to “see” the distribution of dark matter more accurately than any other method used to date and it could possibly be used to explore the ultimate nature of dark matter. The results were published in the journal Monthly Notices of the Royal Astronomical Society.

Faint Starlight In Hubble Images Reveals Distribution Of Dark Matter

In recent decades astronomers have tried to understand the true nature of the mysterious substance that makes up most of the matter in the Universe – dark matter – and to map its distribution in the Universe. Now two astronomers from Australia and Spain have used data from the Frontier Fields programme of the NASA/ESA Hubble Space Telescope to accurately study the distribution of dark matter.

Keep reading


Tags
5 years ago

What's a neutron star? I read about them in Bill Bryson's book, but I couldn't figure out why a neutron start would happen in the first place?

When massive stars collapse, the core of the star gets compressed extremely tightly by the force of its own gravity. As the core collapses, the electrons and protons in the core get closer and closer together. Eventually, the core gets so dense that the electrons and protons are forced together, combining into neutrons. The entire core becomes essentially a solid ball of neutrons, as dense as an atomic nuclei. The outer layers of the star, which are also rushing in towards the core, bounce off of this rock-hard layer of neutrons and whiz off into space, creating a supernova and leaving behind a neutron star at the center. And all of this happens in less than a second. Pretty wild. To summarize: neutron stars are giant balls of neutrons that resulted when a stellar core collapsed and became so dense the protons and electrons combined into neutrons. 

Side note: Robert L. Forward wrote a really interesting novel called Dragon’s Egg, which was about intelligent life on a neutron star! It’s quite an interesting read, and you learn a whole lot about neutron stars since the author has a Ph.D in physics. If you want a copy, you can find it here; you won’t find it at a bookstore because it’s out of print, but you can find a used copy online (I linked to one). Let me know if you have any other questions, I’m happy to answer them!


Tags
  • mayuhnnaise
    mayuhnnaise liked this · 1 month ago
  • notexactlyanartblog
    notexactlyanartblog liked this · 4 months ago
  • tranarchy99
    tranarchy99 reblogged this · 5 months ago
  • verymerryhestia
    verymerryhestia reblogged this · 6 months ago
  • verymerryhestia
    verymerryhestia liked this · 6 months ago
  • brown-bear-64
    brown-bear-64 reblogged this · 8 months ago
  • punkzwallz
    punkzwallz liked this · 8 months ago
  • elviratheepic
    elviratheepic liked this · 8 months ago
  • zuzecadyke
    zuzecadyke liked this · 8 months ago
  • galinophrum
    galinophrum reblogged this · 8 months ago
  • spacetai
    spacetai reblogged this · 8 months ago
  • classicragu
    classicragu liked this · 8 months ago
  • buffoello
    buffoello reblogged this · 8 months ago
  • weird-king-eli
    weird-king-eli liked this · 8 months ago
  • aphelion-z
    aphelion-z liked this · 8 months ago
  • martian-marco
    martian-marco reblogged this · 8 months ago
  • pomegranate-pomegranate
    pomegranate-pomegranate liked this · 8 months ago
  • axolotl-my-time-has-come-to-burn
    axolotl-my-time-has-come-to-burn reblogged this · 8 months ago
  • p3ng-w1n
    p3ng-w1n liked this · 8 months ago
  • camtankerous
    camtankerous reblogged this · 8 months ago
  • cel-likes-bread
    cel-likes-bread liked this · 8 months ago
  • i-miss-breathing
    i-miss-breathing liked this · 8 months ago
  • messilymoonlit
    messilymoonlit reblogged this · 8 months ago
  • messilymoonlit
    messilymoonlit liked this · 8 months ago
  • comic-book-fan-us
    comic-book-fan-us liked this · 8 months ago
  • theshowgeek
    theshowgeek liked this · 8 months ago
  • charlotte-fleming
    charlotte-fleming reblogged this · 8 months ago
  • crossnamara
    crossnamara reblogged this · 8 months ago
  • tea-cuz-why-not
    tea-cuz-why-not reblogged this · 8 months ago
  • bowtiepastabitch
    bowtiepastabitch liked this · 8 months ago
  • lights-at-night
    lights-at-night reblogged this · 8 months ago
  • friday-system
    friday-system liked this · 8 months ago
  • fortitude-nine-point-eight
    fortitude-nine-point-eight liked this · 8 months ago
  • frostedcomics
    frostedcomics reblogged this · 8 months ago
  • sweet-tweeties
    sweet-tweeties liked this · 8 months ago
  • atlasisreal
    atlasisreal reblogged this · 8 months ago
  • kuccigang
    kuccigang liked this · 8 months ago
  • junk-hoe
    junk-hoe reblogged this · 8 months ago
  • maukuja
    maukuja reblogged this · 8 months ago
  • maukuja
    maukuja liked this · 8 months ago
  • hyunie-0ne
    hyunie-0ne reblogged this · 8 months ago
  • hyunie-0ne
    hyunie-0ne liked this · 8 months ago
  • killjoy-prince
    killjoy-prince reblogged this · 8 months ago
  • akwaysha
    akwaysha reblogged this · 8 months ago
  • akwaysha
    akwaysha liked this · 8 months ago
  • male--byleth
    male--byleth reblogged this · 8 months ago

i just think black holes are neat

52 posts

Explore Tumblr Blog
Search Through Tumblr Tags