Hubble Fortuitously Discovers A New Galaxy In The Cosmic Neighborhood

Hubble fortuitously discovers a new galaxy in the cosmic neighborhood

Astronomers using the NASA/ESA Hubble Space Telescope to study some of the oldest and faintest stars in the globular cluster NGC 6752 have made an unexpected finding. They discovered a dwarf galaxy in our cosmic backyard, only 30 million light-years away. The finding is reported in the journal Monthly Notices of the Royal Astronomical Society: Letters.

Hubble Fortuitously Discovers A New Galaxy In The Cosmic Neighborhood

An international team of astronomers recently used the NASA/ESA Hubble Space Telescope to study white dwarf stars within the globular cluster NGC 6752. The aim of their observations was to use these stars to measure the age of the globular cluster, but in the process they made an unexpected discovery.

Keep reading

More Posts from Primordialbitch and Others

5 years ago

How do blackholes form and how do they move ?

5 years ago

This astrophysicist is unlocking  the secrets of dark matter

by Daryle Lockhart

Nico Cappelluti is an assistant professor in the Physics Department and an astrophysicist at the University of Miami. As such, he studies the sky. He is most intrigued by the cosmic phenomena of supermassive black holes, the nature of dark matter, and the very bright light source found at the center of many galaxies - active galactic nuclei.

This Astrophysicist Is Unlocking  The Secrets Of Dark Matter

Recently, Cappelluti published findings in The Astrophysical Journal entitled, “Searching for the 3.5 keV line in the deep fields with Chandra: the 10 MS observations”. His findings could give insight into a subject astrophysicists have been investigating for decades: What is dark matter and where does it come from?

Keep reading


Tags
5 years ago

Gamma-ray Bursts: Black Hole Birth Announcements

Gamma-ray bursts are the brightest, most violent explosions in the universe, but they can be surprisingly tricky to detect. Our eyes can’t see them because they are tuned to just a limited portion of the types of light that exist, but thanks to technology, we can even see the highest-energy form of light in the cosmos — gamma rays.

So how did we discover gamma-ray bursts? 

Accidentally!

image

We didn’t actually develop gamma-ray detectors to peer at the universe — we were keeping an eye on our neighbors! During the Cold War, the United States and the former Soviet Union both signed the Nuclear Test Ban Treaty of 1963 that stated neither nation would test nuclear weapons in space. Just one week later, the US launched the first Vela satellite to ensure the treaty wasn’t being violated. What they saw instead were gamma-ray events happening out in the cosmos!

image

Things Going Bump in the Cosmos

Each of these gamma-ray events, dubbed “gamma-ray bursts” or GRBs, lasted such a short time that information was very difficult to gather. For decades their origins, locations and causes remained a cosmic mystery, but in recent years we’ve been able to figure out a lot about GRBs. They come in two flavors: short-duration (less than two seconds) and long-duration (two seconds or more). Short and long bursts seem to be caused by different cosmic events, but the end result is thought to be the birth of a black hole.

image

Short GRBs are created by binary neutron star mergers. Neutron stars are the superdense leftover cores of really massive stars that have gone supernova. When two of them crash together (long after they’ve gone supernova) the collision releases a spectacular amount of energy before producing a black hole. Astronomers suspect something similar may occur in a merger between a neutron star and an already-existing black hole.

image

Long GRBs account for most of the bursts we see and can be created when an extremely massive star goes supernova and launches jets of material at nearly the speed of light (though not every supernova will produce a GRB). They can last just a few seconds or several minutes, though some extremely long GRBs have been known to last for hours!

Gamma-ray Bursts: Black Hole Birth Announcements

A Gamma-Ray Burst a Day Sends Waves of Light Our Way!

Our Fermi Gamma-ray Space Telescope detects a GRB nearly every day, but there are actually many more happening — we just can’t see them! In a GRB, the gamma rays are shot out in a narrow beam. We have to be lined up just right in order to detect them, because not all bursts are beamed toward us — when we see one it’s because we’re looking right down the barrel of the gamma-ray gun. Scientists estimate that there are at least 50 times more GRBs happening each day than we detect!

image

So what’s left after a GRB — just a solitary black hole? Since GRBs usually last only a matter of seconds, it’s very difficult to study them in-depth. Fortunately, each one leaves an afterglow that can last for hours or even years in extreme cases. Afterglows are created when the GRB jets run into material surrounding the star. Because that material slows the jets down, we see lower-energy light, like X-rays and radio waves, that can take a while to fade. Afterglows are so important in helping us understand more about GRBs that our Neil Gehrels Swift Observatory was specifically designed to study them!

image

Last fall, we had the opportunity to learn even more from a gamma-ray burst than usual! From 130 million light-years away, Fermi witnessed a pair of neutron stars collide, creating a spectacular short GRB. What made this burst extra special was the fact that ground-based gravitational wave detectors LIGO and Virgo caught the same event, linking light and gravitational waves to the same source for the first time ever!

image

For over 10 years now, Fermi has been exploring the gamma-ray universe. Thanks to Fermi, scientists are learning more about the fundamental physics of the cosmos, from dark matter to the nature of space-time and beyond. Discover more about how we’ll be celebrating Fermi’s achievements all year!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Washington State University Physicists create 'negative mass'

Washington State University physicists have created a fluid with negative mass, which is exactly what it sounds like. Push it, and unlike every physical object in the world we know, it doesn’t accelerate in the direction it was pushed. It accelerates backwards.

image

The phenomenon is rarely created in laboratory conditions and can be used to explore some of the more challenging concepts of the cosmos, said Michael Forbes, a WSU assistant professor of physics and astronomy and an affiliate assistant professor at the University of Washington. The research appears today in the journal Physical Review Letters, where it is featured as an “Editor’s Suggestion.”

Hypothetically, matter can have negative mass in the same sense that an electric charge can be either negative or positive. People rarely think in these terms, and our everyday world sees only the positive aspects of Isaac Newton’s Second Law of Motion, in which a force is equal to the mass of an object times its acceleration, or F=ma. In other words, if you push an object, it will accelerate in the direction you’re pushing it. Mass will accelerate in the direction of the force.

Keep reading

5 years ago

Pick Your Favorite Findings From Fermi’s First Decade

The Fermi Gamma-ray Space Telescope has been observing some of the most extreme objects and events in the universe — from supermassive black holes to merging neutron stars and thunderstorms — for 10 years. Fermi studies the cosmos using gamma rays, the highest-energy form of light, and has discovered thousands of new phenomena for scientists.

Here are a few of our favorite Fermi discoveries, pick your favorite in the first round of our “Fermi Science Playoff.” 

Colliding Neutron Stars

image

In 2017, Fermi detected a gamma ray burst at nearly the same moment ground observatories detected gravitational waves from two merging neutron stars. This was the first time light and ripples in space-time were detected from the same source.

The Sun and Moon in Gamma Rays

image

In 2016, Fermi showed the Moon is brighter in gamma rays than the Sun. Because the Moon doesn’t have a magnetic field, the surface is constantly pelted from all directions by cosmic rays. These produce gamma rays when they run into other particles, causing a full-Moon gamma-ray glow.

Record Rare from a Blazar

image

The supermassive black hole at the center of the galaxy 3C 279 weighs a billion times the mass of our Sun. In June 2015, this blazar became the brightest gamma-ray source in the sky due to a record-setting flare.

The First Gamma-Ray Pulsar in Another Galaxy

image

In 2015, for the first time, Fermi discovered a gamma-ray pulsar, a kind of rapidly spinning superdense star, in a galaxy outside our own. The object, located on the outskirts of the Tarantula Nebula, also set the record for the most luminous gamma-ray pulsar we’ve seen so far.

A Gamma-Ray Cycle in Another Galaxy

image

Many galaxies, including our own, have black holes at their centers. In active galaxies, dust and gas fall into and “feed” the black hole, releasing light and heat. In 2015 for the first time, scientists using Fermi data found hints that a galaxy called PG 1553+113 has a years-long gamma-ray emission cycle. They’re not sure what causes this cycle, but one exciting possibility is that the galaxy has a second supermassive black hole that causes periodic changes in what the first is eating.

Gamma Rays from Novae

image

A nova is a fairly common, short-lived kind of explosion on the surface of a white dwarf, a type of compact star not much larger than Earth. In 2014, Fermi observed several novae and found that they almost always produce gamma-rays, giving scientists a new type of source to explore further with the telescope.

A Record-Setting Cosmic Blast

image

Gamma-ray bursts are the most luminous explosions in the universe. In 2013, Fermi spotted the brightest burst it’s seen so far in the constellation Leo. In the first three seconds alone, the burst, called GRB 130427A, was brighter than any other burst seen before it. This record has yet to be shattered.

Cosmic Rays from Supernova Leftovers

image

Cosmic rays are particles that travel across the cosmos at nearly the speed of light. They are hard to track back to their source because they veer off course every time they encounter a magnetic field. In 2013, Fermi showed that these particles reach their incredible speed in the shockwaves of supernova remains — a theory proposed in 1949 by the satellite’s namesake, the Italian-American physicist Enrico Fermi.

Discovery of a Transformer Pulsar

image

In 2013, the pulsar in a binary star system called AY Sextanis switched from radio emissions to high-energy gamma rays. Scientists think the change reflects erratic interaction between the two stars in the binary.

Gamma-Ray Measurement of a Gravitational Lens

image

A gravitational lens is a kind of natural cosmic telescope that occurs when a massive object in space bends and amplifies light from another, more distant object. In 2012, Fermi used gamma rays to observe a spiral galaxy 4.03 billion light-years away bending light coming from a source 4.35 billion light-years away.

New Limits on Dark Matter

image

We can directly observe only 20 percent of the matter in the universe. The rest is invisible to telescopes and is called dark matter — and we’re not quite sure what it is. In 2012, Fermi helped place new limits on the properties of dark matter, essentially narrowing the field of possible particles that can describe what dark matter is.

‘Superflares’ in the Crab Nebula

image

The Crab Nebula supernova remnant is one of the most-studied targets in the sky — we’ve been looking at it for almost a thousand years! In 2011, Fermi saw it erupt in a flare five times more powerful than any previously seen from the object. Scientists calculate the electrons in this eruption are 100 times more energetic than what we can achieve with particle accelerators on Earth.

Thunderstorms Hurling Antimatter into Space

image

Terrestrial gamma-ray flashes are created by thunderstorms. In 2011, Fermi scientists announced the satellite had detected beams of antimatter above thunderstorms, which they think are a byproduct of gamma-ray flashes.

Giant Gamma-Ray Bubbles in the Milky Way

image

Using data from Fermi in 2010, scientists discovered a pair of “bubbles” emerging from above and below the Milky Way. These enormous bubbles are half the length of the Milky Way and were probably created by our galaxy’s supermassive black hole only a few million years ago.

Hint of Starquakes in a Magnetar

image

Neutron stars have magnetic fields trillions of times stronger than Earth’s. Magnetars are neutron stars with magnetic fields 1,000 times stronger still. In 2009, Fermi saw a storm of gamma-ray bursts from a magnetar called SGR J1550-5418, which scientists think were related to seismic waves rippling across its surface.

A Dark Pulsar

image

We observe many pulsars using radio waves, visible light or X-rays. In 2008, Fermi found the first gamma-ray only pulsar in a supernova remnant called CTA 1. We think that the “beam” of gamma rays we see from CTA 1 is much wider than the beam of other types of light from that pulsar. Those other beams never sweep across our vision — only the gamma-rays.

image

Have a favorite Fermi discovery or want to learn more? Cast your vote in the first of four rounds of the Fermi Science Playoff to help rank Fermi’s findings. Or follow along as we celebrate the mission all year.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
2 years ago

seeing the photos from Webb up against photos from Hubble just makes me… I don’t even know like, wow! Look at that!

Seeing The Photos From Webb Up Against Photos From Hubble Just Makes Me… I Don’t Even Know Like,
Seeing The Photos From Webb Up Against Photos From Hubble Just Makes Me… I Don’t Even Know Like,
Seeing The Photos From Webb Up Against Photos From Hubble Just Makes Me… I Don’t Even Know Like,
Seeing The Photos From Webb Up Against Photos From Hubble Just Makes Me… I Don’t Even Know Like,
Seeing The Photos From Webb Up Against Photos From Hubble Just Makes Me… I Don’t Even Know Like,
Seeing The Photos From Webb Up Against Photos From Hubble Just Makes Me… I Don’t Even Know Like,
Seeing The Photos From Webb Up Against Photos From Hubble Just Makes Me… I Don’t Even Know Like,
Seeing The Photos From Webb Up Against Photos From Hubble Just Makes Me… I Don’t Even Know Like,
4 years ago

in mesopotamia there were no 'cover letters' or 'curriculum vitaes'. there were just, pots.

  • primordialbitch
    primordialbitch reblogged this · 5 years ago
  • adiposeclot
    adiposeclot liked this · 5 years ago
  • maximumcrusadecolor
    maximumcrusadecolor liked this · 6 years ago
  • loudbird23-blog
    loudbird23-blog liked this · 6 years ago
  • skopjanka
    skopjanka liked this · 6 years ago
  • empresscarina
    empresscarina liked this · 6 years ago
  • mementc-mcri
    mementc-mcri liked this · 6 years ago
  • thatonehotredhead
    thatonehotredhead liked this · 6 years ago
  • narutogudiofwo-blog
    narutogudiofwo-blog liked this · 6 years ago
  • mik0ss
    mik0ss liked this · 6 years ago
  • yourcrowsovereign
    yourcrowsovereign liked this · 6 years ago
  • floating-hasselblad
    floating-hasselblad reblogged this · 6 years ago
  • mscoutt
    mscoutt liked this · 6 years ago
  • imbogwitch
    imbogwitch liked this · 6 years ago
  • diosita-de-la-lluvia
    diosita-de-la-lluvia liked this · 6 years ago
  • -deelightly-
    -deelightly- reblogged this · 6 years ago
  • -deelightly-
    -deelightly- liked this · 6 years ago
  • turojor8
    turojor8 liked this · 6 years ago
  • freckledsunkisses
    freckledsunkisses liked this · 6 years ago
  • telegram4you2
    telegram4you2 reblogged this · 6 years ago
  • kidrauhlforlifetime
    kidrauhlforlifetime liked this · 6 years ago
  • ultrapinkmiracle
    ultrapinkmiracle liked this · 6 years ago
  • kozik267
    kozik267 liked this · 6 years ago
  • hrodbert65
    hrodbert65 liked this · 6 years ago
  • bradleylehworld
    bradleylehworld liked this · 6 years ago
  • army-with-seoul
    army-with-seoul liked this · 6 years ago
  • random-acts-of-stupidity
    random-acts-of-stupidity liked this · 6 years ago
  • badluk07
    badluk07 liked this · 6 years ago
  • chroniczombie91
    chroniczombie91 liked this · 6 years ago
  • tpl2
    tpl2 reblogged this · 6 years ago
  • etheralstardust
    etheralstardust liked this · 6 years ago
  • bradburymeinfire
    bradburymeinfire liked this · 6 years ago
  • agathaajudia
    agathaajudia liked this · 6 years ago
  • keenathletehumanoidlight-blog
    keenathletehumanoidlight-blog liked this · 6 years ago
  • pprismo
    pprismo liked this · 6 years ago
  • kelseadamntastic
    kelseadamntastic reblogged this · 6 years ago
  • josephusrex
    josephusrex reblogged this · 6 years ago
  • josephusrex
    josephusrex liked this · 6 years ago
  • lil--beast
    lil--beast liked this · 6 years ago
  • pipuisci
    pipuisci reblogged this · 6 years ago
  • pipius
    pipius liked this · 6 years ago
  • c0smicdrift3r
    c0smicdrift3r liked this · 6 years ago
  • c0smicdrift3r
    c0smicdrift3r reblogged this · 6 years ago

i just think black holes are neat

52 posts

Explore Tumblr Blog
Search Through Tumblr Tags