Footage from vibration and thermal vacuum testing of the SCALPSS cameras and data storage unit.
Credits: NASA/Gary Banziger
This little black camera looks like something out of a spy movie — the kind of device one might use to snap discrete photos of confidential documents.
It's about half the size of a computer mouse.
The SCALPSS cameras, one of which is pictured here prior to thermal vacuum testing, are about the size of a computer mouse. Credits: NASA
But the only spying this camera — four of them, actually — will do is for NASA researchers wondering what happens under a spacecraft as it lands on the Moon.
It's a tiny technology with a big name — Stereo Camera for Lunar Plume-Surface Studies, or SCALPSS for short — and it will journey to the Moon in 2021 as a payload aboard an Intuitive Machines Nova-C lunar lander spacecraft. Intuitive Machines is one of two U.S. companies delivering technology and science experiments to the lunar surface later this year as part of NASA's Commercial Lunar Payload Services (CLPS) initiative. SCALPSS will provide important data about the crater formed by the rocket plume of the lander as it makes its final descent and landing on the Moon's surface.
As part of the Artemis program, NASA will send robots and humans to study more of the Moon than ever before. The agency plans to establish sustainable lunar exploration by the end of the decade, and has outlined its Artemis Base Camp concept for the lunar South Pole. Landers may deliver multiple payloads very near one another. Data such as that from SCALPSS will prove aid in computer models that inform subsequent landings.
SCALPSS team members prepare the cameras and data storage unit for vibration testing. Credits: NASA/David C. Bowman
"As we send bigger, heavier payloads and we try to land things in close proximity to each other, first at the Moon then at Mars, this ability to predict landing impacts is very important," said Michelle Munk, principal investigator for SCALPSS at NASA's Langley Research Center in Hampton, Virginia.
The four SCALPSS cameras, which will be placed around the base of the commercial lander, will begin monitoring crater formation from the precise moment a lander's hot engine plume begins to interact with the Moon's surface.
"If you don't see the crater when it starts to form, you can't really model it," said Munk. "You've got to have the start point and the end point and then you can figure out what happened, in between."
The cameras will continue capturing images until after the landing is complete. Those final stereo images, which will be stored on a small onboard data storage unit before being sent to the lander for downlink back to Earth, will allow researchers to reconstruct the crater's ultimate shape and volume.
The SCALPSS data storage unit will store the imagery the cameras collect as the Intuitive Machines Nova-C lunar lander spacecraft makes its final descent and lands on the Moon's surface. Credits: NASA
Testing to characterize the SCALPSS camera and lens took place last year at NASA's Marshall Space Flight Center in Huntsville, Alabama. Researchers conducted radial distortion, field-of-view and depth-of-focus tests among others. They also ran analytical models to better characterize how the cameras will perform. Development of the actual SCALPSS payload took place at Langley. And over the summer, researchers were able to enter the lab to assemble the payload and conduct thermal vacuum and vibration tests.
That lab access involves special approval from officials at Langley, which is currently only giving access to essential employees and high-priority projects to keep employees safe during the ongoing COVID-19 pandemic. SCALPSS was one of the first projects to return to the center. Before they could do that, facilities had to pass safety and hazard assessments. And while on center, the team had to follow strict COVID-19 safety measures, such as wearing masks and limiting the number of people who could be in a room at one time. The center also provided ample access to personal protective equipment and hand sanitizer.
The SCALPSS hardware was completed in late October and will be delivered to Intuitive Machines in February.
"Development and testing for the project moved at a pretty brisk pace with very limited funds," said Robert Maddock, SCALPSS project manager. "This was likely one of the most challenging projects anyone on the team has ever worked on."
But Munk, Maddock and the entire project team have embraced these challenges because they know the images these little cameras collect may have big ripple effects as NASA prepares for a human return to the Moon as part of the Artemis program.
"To be able to get flight data and update models and influence other designs — it's really motivating and rewarding," said Munk.
Hot off the heels of this project, the SCALPSS team has already begun development of a second payload called SCALPSS 1.1. It will be flown by another CLPS commercial lander provider to a non-polar region of the Moon in 2023 and collect data similar to its predecessor. It will also carry two additional cameras to get higher resolution stereo images of the landing area before engine plume interactions begin, which is critical for the analytic models in establishing the initial conditions for the interactions.
NASA’s Artemis program includes sending a suite of new science instruments and technology demonstrations to study the Moon, landing the first woman and next man on the lunar surface in 2024, and establishing a sustained presence by the end of the decade. The agency will leverage its Artemis experience and technologies to prepare for humanity’s the next giant leap – sending astronauts to Mars as early as the 2030s.
Joe Atkinson NASA Langley Research Center
By the end of the year, over 70 different models had been tested by facilities at the Air Force's Arnold Engineering Development Center and the NASA Langley, Ames, and Lewis Research Centers.
Here at NASA Langley Research Center, a lot of those tests took place in our 7 X 10-Foot High Speed Tunnel (pictured above).
Some tests also took place in our 20-Foot Vertical Spin Tunnel.
The California Current System
This February 8, 2016 composite image reveals the complex distribution of phytoplankton in one of Earth’s eastern boundary upwelling systems — the California Current. Recent work suggests that our warming climate my be increasing the intensity of upwelling in such regions with possible repercussions for the species that comprise those ecosystems.
NASA’s OceanColor Web is supported by the Ocean Biology Processing Group (OBPG) at NASA’s Goddard Space Flight Center. Our responsibilities include the collection, processing, calibration, validation, archive and distribution of ocean-related products from a large number of operational, satellite-based remote-sensing missions providing ocean color, sea surface temperature and sea surface salinity data to the international research community since 1996.
Credit: NASA/Goddard/Suomin-NPP/VIIRS #California #nasagoddard #earth #ocean
@nasa
What would the future look like if people were regularly visiting to other planets and moons? These travel posters give a glimpse into that imaginative future. Take a look and choose your destination:
Our Voyager mission took advantage of a once-every-175-year alignment of the outer planets for a grand tour of the solar system. The twin spacecraft revealed details about Jupiter, Saturn, Uranus and Neptune – using each planet’s gravity to send them on to the next destination.
Our Mars Exploration Program seeks to understand whether Mars was, is, or can be a habitable world. This poster imagines a future day when we have achieved our vision of human exploration of the Red Planet and takes a nostalgic look back at the great imagined milestones of Mars exploration that will someday be celebrated as “historic sites.”
There’s no place like home. Warm, wet and with an atmosphere that’s just right, Earth is the only place we know of with life – and lots of it. Our Earth science missions monitor our home planet and how it’s changing so it can continue to provide a safe haven as we reach deeper into the cosmos.
The rare science opportunity of planetary transits has long inspired bold voyages to exotic vantage points – journeys such as James Cook’s trek to the South Pacific to watch Venus and Mercury cross the face of the sun in 1769. Spacecraft now allow us the luxury to study these cosmic crossings at times of our choosing from unique locales across our solar system.
Ceres is the closest dwarf planet to the sun. It is the largest object in the main asteroid belt between Mars and Jupiter, with an equatorial diameter of about 965 kilometers. After being studied with telescopes for more than two centuries, Ceres became the first dwarf planet to be explored by a spacecraft, when our Dawn probe arrived in orbit in March 2015. Dawn’s ongoing detailed observations are revealing intriguing insights into the nature of this mysterious world of ice and rock.
The Jovian cloudscape boasts the most spectacular light show in the solar system, with northern and southern lights to dazzle even the most jaded space traveler. Jupiter’s auroras are hundreds of times more powerful than Earth’s, and they form a glowing ring around each pole that’s bigger than our home planet.
The discovery of Enceladus’ icy jets and their role in creating Saturn’s E-ring is one of the top findings of the Cassini mission to Saturn. Further Cassini discoveries revealed strong evidence of a global ocean and the first signs of potential hydrothermal activity beyond Earth – making this tiny Saturnian moon one of the leading locations in the search for possible life beyond Earth.
Frigid and alien, yet similar to our own planet billions of years ago, Saturn’s largest moon, Titan has a thick atmosphere, organic-rich chemistry and surface shaped by rivers and lakes of liquid ethane and methane. Our Cassini orbiter was designed to peer through Titan’s perpetual haze and unravel the mysteries of this planet-like moon.
Astonishing geology and the potential to host the conditions for simple life making Jupiter’s moon Europa a fascinating destination for future exploration. Beneath its icy surface, Europa is believed to conceal a global ocean of salty liquid water twice the volume of Earth’s oceans. Tugging and flexing from Jupiter’s gravity generates enough heat to keep the ocean from freezing.
You can download free poster size images of these thumbnails here: http://www.jpl.nasa.gov/visions-of-the-future/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The Vehicle Assembly Building (VAB) is one of the largest buildings in the world (525 ft 10 in tall, 716 ft long, and 518 ft wide) . It was originally built for assembly of Apollo/Saturn vehicles and was later modified to support Space Shuttle operations and now, Space Launch System rocket and Orion spacecraft for Exploration Mission 1.
In this view looking up from the floor of the VAB at NASA’s Kennedy Space Center in Florida, four levels of new work platforms are now installed on the north and south sides of High Bay 3. The G-level work platforms were most recently installed, at about the 14th floor level. Below them are the H, J and K level platforms.
The G-level work platforms are the fourth of 10 levels of work platforms that will surround and provide access to SLS. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s journey to Mars.
NASA’s aeronautical innovators are ready to take things supersonic, but with a quiet twist.
For the first time in decades, NASA aeronautics is moving forward with the construction of a piloted X-plane, designed from scratch to fly faster than sound with the latest in quiet supersonic technologies.
The new X-plane’s mission: provide crucial data that could enable commercial supersonic passenger air travel over land.
To that end, NASA on April 2 awarded a $247.5 million contract to Lockheed Martin Aeronautics Company of Palmdale, Calif., to build the X-plane and deliver it to the agency’s Armstrong Flight Research Center in California by the end of 2021.
“It is super exciting to be back designing and flying X-planes at this scale,” said Jaiwon Shin, NASA’s associate administrator for aeronautics. “Our long tradition of solving the technical barriers of supersonic flight to benefit everyone continues.”
The key to success for this mission – known as the Low-Boom Flight Demonstrator – will be to demonstrate the ability to fly supersonic, yet generate sonic booms so quiet, people on the ground will hardly notice them, if they hear them at all.
Current regulations, which are based on aircraft speed, ban supersonic flight over land. With the low-boom flights, NASA intends to gather data on how effective the quiet supersonic technology is in terms of public acceptance by flying over a handful of U.S. cities, which have yet to be selected.
The complete set of community response data is targeted for delivery in 2025 to the Federal Aviation Administration (FAA) and the International Civil Aviation Organization (ICAO) from which they can develop and adopt new rules based on perceived sound levels to allow commercial supersonic flight over land.
Years of sonic boom research, beginning with the X-1 first breaking the sound barrier in 1947 – when NASA was the National Advisory Committee for Aeronautics – paved the way for the Low-Boom Flight Demonstration X-plane’s nearly silent treatment of supersonic flight.
The answer to how the X-plane's design makes a quiet sonic boom is in the way its uniquely-shaped hull generates supersonic shockwaves. Shockwaves from a conventional aircraft design coalesce as they expand away from the airplane’s nose and tail, resulting in two distinct and thunderous sonic booms.
But the design’s shape sends those shockwaves away from the aircraft in a way that prevents them from coming together in two loud booms. Instead, the much weaker shockwaves reach the ground still separated, which will be heard as a quick series of soft thumps – again, if anyone standing outside notices them at all.
It’s an idea first theorized during the 1960s and tested by NASA and others during the years since, including flying from 2003-2004 an F-5E Tiger fighter jetmodified with a uniquely-shaped nose, which proved the boom-reducing theory was sound.
NASA’s confidence in the Low-Boom Flight Demonstration design is buoyed by its more recent research using results from the latest in wind-tunnel testing, and advanced computer simulation tools, and actual flight testing.
Recent studies have investigated methods to improve the aerodynamic efficiency of supersonic aircraft wings, and sought to better understand sonic boom propagation through the atmosphere.
Even a 150-year-old photographic technique has helped unlock the modern mysteries of supersonic shockwave behavior during the past few years.
“We’ve reached this important milestone only because of the work NASA has led with its many partners from other government agencies, the aerospace industry and forward-thinking academic institutions everywhere,” said Peter Coen, NASA’s Commercial Supersonic Technology project manager.
So now it’s time to cut metal and begin construction.
The X-plane’s configuration will be based on a preliminary design developed by Lockheed Martin under a contract awarded in 2016. The proposed aircraft will be 94 feet long with a wingspan of 29.5 feet and have a fully-fueled takeoff weight of 32,300 pounds.
The design research speed of the X-plane at a cruising altitude of 55,000 feet is Mach 1.42, or 940 mph. Its top speed will be Mach 1.5, or 990 mph. The jet will be propelled by a single General Electric F414 engine, the powerplant used by F/A-18E/F fighters.
A single pilot will be in the cockpit, which will be based on the design of the rear cockpit seat of the T-38 training jet famously used for years by NASA’s astronauts to stay proficient in high-performance aircraft.
Jim Less is one of the two primary NASA pilots at Armstrong who will fly the X-plane after Lockheed Martin’s pilots have completed initial test flights to make sure the design is safe to fly.
“A supersonic manned X-plane!” Less said, already eager to get his hands on the controls. “This is probably going to be a once-in-a-lifetime opportunity for me. We’re all pretty excited.”
Less is the deputy chief pilot for Low-Boom Flight Demonstration. He and his boss, chief pilot Nils Larson, have already provided some input into things like cockpit design and the development of the simulators they will use for flight training while the aircraft is under construction.
“It’s pretty rare in a test pilot’s career that he can be involved in everything from the design phase to the flight phase, and really the whole life of the program,” Less said.
The program is divided into three phases and the tentative schedule looks like this:
2019 – NASA conducts a critical design review of the low-boom X-plane configuration, which, if successful, allows final construction and assembly to be completed.
2021 – Construction of the aircraft at Lockheed Martin’s Skunk Works facility in Palmdale is completed, to be followed by a series of test flights to demonstrate the aircraft is safe to fly and meets all of NASA’s performance requirements. The aircraft is then officially delivered to NASA, completing Phase One.
2022 – Phase Two will see NASA fly the X-plane in the supersonic test range over Edwards to prove the quiet supersonic technology works as designed, its performance is robust, and it is safe for operations in the National Airspace System.
2023 to 2025 – Phase Three begins with the first community response test flights, which will be staged from Armstrong. Further community response activity will take place in four to six cities around the U.S.
All of NASA’s aeronautics research centers play a part in the Low-Boom Flight Demonstration mission, which includes construction of the demonstrator and the community overflight campaign. For the low-boom flight demonstrator itself, these are their roles:
Ames Research Center, California — configuration assessment and systems engineering.
Armstrong Flight Research Center, California — airworthiness, systems engineering, safety and mission assurance, flight/ground operations, flight systems, project management, and community response testing.
Glenn Research Center, Cleveland — configuration assessment and propulsion performance.
Langley Research Center, Virginia — systems engineering, configuration assessment and research data, flight systems, project management, and community response testing.
“There are so many people at NASA who have put in their very best efforts to get us to this point,” said Shin. “Thanks to their work so far and the work to come, we will be able to use this X-plane to generate the scientifically collected community response data critical to changing the current rules to transforming aviation!”
Jim Banke Aeronautics Research Mission Directorate
A new map of Mars' gravity made with three NASA spacecraft is the most detailed to date, providing a revealing glimpse into the hidden interior of the Red Planet.
"Gravity maps allow us to see inside a planet, just as a doctor uses an X-ray to see inside a patient," said Antonio Genova of the Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts. "The new gravity map will be helpful for future Mars exploration, because better knowledge of the planet's gravity anomalies helps mission controllers insert spacecraft more precisely into orbit about Mars. Furthermore, the improved resolution of our gravity map will help us understand the still-mysterious formation of specific regions of the planet." Genova, who is affiliated with MIT but is located at NASA's Goddard Space Flight Center in Greenbelt, Maryland, is the lead author of a paper on this research published online March 5 in the journal Icarus.
The improved resolution of the new gravity map suggests a new explanation for how some features formed across the boundary that divides the relatively smooth northern lowlands from heavily cratered southern highlands. Also, the team confirmed that Mars has a liquid outer core of molten rock by analyzing tides in the Martian crust and mantle caused by the gravitational pull of the sun and the two moons of Mars. Finally, by observing how Mars' gravity changed over 11 years – the period of an entire cycle of solar activity -- the team inferred the massive amount of carbon dioxide that freezes out of the atmosphere onto a Martian polar ice cap when it experiences winter. They also observed how that mass moves between the south pole and the north pole with the change of season in each hemisphere.
The map was derived using Doppler and range tracking data collected by NASA's Deep Space Network from three NASA spacecraft in orbit around Mars: Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). Like all planets, Mars is lumpy, which causes the gravitational pull felt by spacecraft in orbit around it to change. For example, the pull will be a bit stronger over a mountain, and slightly weaker over a canyon.
Slight differences in Mars' gravity changed the trajectory of the NASA spacecraft orbiting the planet, which altered the signal being sent from the spacecraft to the Deep Space Network. These small fluctuations in the orbital data were used to build a map of the Martian gravity field.
The gravity field was recovered using about 16 years of data that were continuously collected in orbit around Mars. However, orbital changes from uneven gravity are tiny, and other forces that can perturb the motion of the spacecraft had to be carefully accounted for, such as the force of sunlight on the spacecraft's solar panels and drag from the Red Planet's thin upper atmosphere. It took two years of analysis and computer modeling to remove the motion not caused by gravity.
"With this new map, we've been able to see gravity anomalies as small as about 100 kilometers (about 62 miles) across, and we've determined the crustal thickness of Mars with a resolution of around 120 kilometers (almost 75 miles)," said Genova. "The better resolution of the new map helps interpret how the crust of the planet changed over Mars' history in many regions."
For example, an area of lower gravity between Acidalia Planitia and Tempe Terra was interpreted before as a system of buried channels that delivered water and sediments from Mars' southern highlands into the northern lowlands billions of years ago when the Martian climate was wetter than it is today. The new map reveals that this low gravity anomaly is definitely larger and follows the boundary between the highlands and the lowlands. This system of gravity troughs is unlikely to be only due to buried channels because in places the region is elevated above the surrounding plains. The new gravity map shows that some of these features run perpendicular to the local topography slope, against what would have been the natural downhill flow of water.
An alternative explanation is that this anomaly may be a consequence of a flexure or bending of the lithosphere -- the strong, outermost layer of the planet -- due to the formation of the Tharsis region. Tharsis is a volcanic plateau on Mars thousands of miles across with the largest volcanoes in the solar system. As the Tharsis volcanoes grew, the surrounding lithosphere buckled under their immense weight.
The new gravity field also allowed the team to confirm indications from previous gravity solutions that Mars has a liquid outer core of molten rock. The new gravity solution improved the measurement of the Martian tides, which will be used by geophysicists to improve the model of Mars' interior.
Changes in Martian gravity over time have been previously measured using the MGS and ODY missions to monitor the polar ice caps. For the first time, the team used MRO data to continue monitoring their mass. The team has determined that when one hemisphere experiences winter, approximately 3 trillion to 4 trillion tons of carbon dioxide freezes out of the atmosphere onto the northern and southern polar caps, respectively. This is about 12 to 16 percent of the mass of the entire Martian atmosphere. NASA's Viking missions first observed this massive seasonal precipitation of carbon dioxide. The new observation confirms numerical predictions from the Mars Global Reference Atmospheric Model – 2010.
The research was funded by grants from NASA's Mars Reconnaissance Orbiter mission and NASA's Mars Data Analysis Program.
Bill Steigerwald
Sam McDonald NASA Langley Research Center
A new display at the Hampton History Museum offers another view of African-American women whose mathematical skills helped the nation’s early space program soar.
“When the Computer Wore a Skirt: NASA’s Human Computers” opens to the public Saturday, Jan. 21, and focuses on three women — Dorothy Vaughan, Mary Jackson and Katherine Johnson — who were illuminated in Margot Lee Shetterly’s book “Hidden Figures” and the major motion picture of the same name. Located in the museum's 20th century gallery, it was created with support from the Hampton Convention and Visitor Bureau and assistance from NASA's Langley Research Center.
“Langley’s West Computers were helping America dominate aeronautics, space research, and computer technology, carving out a place for themselves as female mathematicians who were also black, black mathematicians who were also female,” Shetterly wrote.
The modestly sized exhibit is comprised of four panels with photos and text along with one display case containing artifacts, including a 1957 model Friden mechanical calculator. That piece of equipment represented state-of-the-art technology when then original human computers were crunching numbers. A three-minute video profiling Johnson —a Presidential Medal of Freedom winner — is also part of the exhibit.
A display case at left contains a 1957 Friden STW-10 mechanical calculator, the type used by NASA human computers including Katherine Johnson. "If you were doing complicated computations during that time, this is what you used," said Hampton History Museum Curator Allen Hoilman. The machine weighs 40 pounds.
Credits: NASA/David C. Bowman
Museum curator Allen Hoilman said his favorite artifact is a May 5, 1958 memo from Associate Director Floyd Thompson dissolving the West Area Computers Unit and reassigning its staff members to other jobs around the center.
“It meant that the segregated work environment was coming to an end,” Hoilman said. “That’s why this is a significant document. It’s one of the bookends.”
That document, along with several others, was loaned to the museum by Ann Vaughan Hammond, daughter of Dorothy Vaughan. Hoilman said family members of other human computers have been contacted about contributing artifacts as well.
Ann Vaughan Hammond worked hard to find meaningful items for the display. “She really had to do some digging through the family papers,” Hoilman said, explaining that the women who worked as human computers were typically humble about their contributions. They didn’t save many mementos.
“They never would have guessed they would be movie stars,” Hoilman said.
For more information on Katherine Johnson, click here.
Credits:
Sam McDonald NASA Langley Research Center
A smiling Katherine Johnson returned Thursday to the NASA center where, for decades, she used her mathematical smarts to help shape history.
This time she was in the spotlight, not behind a desk making complex calculations and searching for the truth in numbers.
Katherine Johnson worked at NASA's Langley Research Center from 1953 to 1986. Since her retirement, she's been a strong advocate for science, technology, engineering and math (STEM) education.Credits: NASA/David C. Bowman
The mathematician and 97-year-old Newport News resident visited NASA’s Langley Research Center in Hampton, Virginia, to attend a ceremony where a $30 million, 40,000-square-foot Computational Research Facility was named in her honor.
As part of the event, Johnson also received a Silver Snoopy award from Leland Melvin, an astronaut and former NASA associate administrator for education. Often called the astronaut’s award, the Silver Snoopy goes to people who have made outstanding contributions to flight safety and mission success.
“I do thank you so much for your attention, for your kindness, but more than that, I’m so happy to see you giving more recognition to women for the work that they have done,” Johnson said. “I have always done my best … At the time it was just another day’s work.”
Johnson needn’t have been modest. She’s a Presidential Medal of Freedom winnerwhose sharp mind gave NASA an edge in mankind’s quest to explore space.
She first made her mark at a time when women and African-Americans were regularly marginalized.
Working at Langley from 1953 until her retirement in 1986, Johnson made a long list of critical contributions. She calculated the trajectory of the 1961 flight of Alan Shepard, the first American in space. Thursday’s ceremony was held on the 55th anniversary of that historic flight.
Johnson is also credited for verifying the calculations made by early electronic computers of John Glenn’s 1962 launch to orbit and the 1969 Apollo 11 trajectory to the moon.
Margot Lee Shetterly, author of a forthcoming book about Johnson and other women whose calculations were integral to America’s space program, gave the keynote address at Thursday’s event.
Her book, “Hidden Figures: The American Dream and the Untold Story of the Black Women Mathematicians Who Helped NASA and the United States Win the Space Race,” is scheduled to be published in September by William Morrow.
Shetterly noted that Johnson eagerly credits others who share her passion for what’s now called STEM, short for science, technology, engineering and math.
In that spirit, Shetterly reviewed contributions of other notable NASA Langley women: Dorothy Vaughan, Margery Hannah and Christine Darden.
“This is one of the reasons why Mrs. Johnson’s story has captivated us,” Shetterly said. “She has such a towering talent but she has gone out of her way to recognize talent in other people.”
Hollywood is preparing to tell Johnson’s story. A film version of “Hidden Figures” starring Kirsten Dunst, Kevin Costner and Taraji P. Henson is now being produced by 20th Century Fox.
“I want to congratulate you, Mrs. Katherine Goble Johnson, Mrs. Queen Johnson, the brilliant mind, Mrs. Johnson, for the naming of the building, rightfully deserved,” said actress Henson, in a recorded video message played during the ceremony. Henson will portray Johnson in the film.
“You deserve it. They should name NASA after you! Thank you for your service.”
The Katherine G. Johnson Computational Research Facility under construction at NASA Langley is nearly one-fourth complete and is expected to open in 2017. The third new building in the center’s 20-year revitalization plan, it will allow the center to consolidate the majority of its data centers in one location.
Rep. Bobby Scott and Hampton Mayor George Wallace spoke at Thursday’s naming ceremony. Rep. Scott Rigell sent a representative who offered his congratulations. Sen. Tim Kaine sent a video greeting. A letter from NASA Administrator Charlie Bolden was read aloud.
“I am told you once remarked that, even though you grew up in the height of segregation, you did not have time to think about your place in history and that you never had a feeling of inferiority,” Bolden wrote. “Instead you considered yourself, as you described it, ‘as good as anybody, but no better.’
“The truth of the matter is that you are better. You are one of the greatest minds ever to grace our agency or our country and because of your mind, heart, and soul, my own granddaughters and young Americans like them can pursue their own dreams without a feeling of inferiority."
Rep. Scott said he's happy that Johnson's remarkable contributions are finally getting the exposure they deserve. He's looking forward to seeing them splashed across the big screen.
"I enjoy comedies and thrillers like anybody else," he said, "but Dr. Johnson's story is one that we ought to be telling our children."
See a video on Katherine Johnson's legacy.
See more photos from Thursday's event at a Flickr gallery.