New NASA X-Plane Construction Begins Now

New NASA X-Plane Construction Begins Now

New NASA X-Plane Construction Begins Now

NASA’s aeronautical innovators are ready to take things supersonic, but with a quiet twist.

For the first time in decades, NASA aeronautics is moving forward with the construction of a piloted X-plane, designed from scratch to fly faster than sound with the latest in quiet supersonic technologies.

The new X-plane’s mission: provide crucial data that could enable commercial supersonic passenger air travel over land.

New NASA X-Plane Construction Begins Now

To that end, NASA on April 2 awarded a $247.5 million contract to Lockheed Martin Aeronautics Company of Palmdale, Calif., to build the X-plane and deliver it to the agency’s Armstrong Flight Research Center in California by the end of 2021.

“It is super exciting to be back designing and flying X-planes at this scale,” said Jaiwon Shin, NASA’s associate administrator for aeronautics. “Our long tradition of solving the technical barriers of supersonic flight to benefit everyone continues.”

The key to success for this mission – known as the Low-Boom Flight Demonstrator – will be to demonstrate the ability to fly supersonic, yet generate sonic booms so quiet, people on the ground will hardly notice them, if they hear them at all.

Current regulations, which are based on aircraft speed, ban supersonic flight over land. With the low-boom flights, NASA intends to gather data on how effective the quiet supersonic technology is in terms of public acceptance by flying over a handful of U.S. cities, which have yet to be selected.

The complete set of community response data is targeted for delivery in 2025 to the Federal Aviation Administration (FAA) and the International Civil Aviation Organization (ICAO) from which they can develop and adopt new rules based on perceived sound levels to allow commercial supersonic flight over land.

Years of sonic boom research, beginning with the X-1 first breaking the sound barrier in 1947 – when NASA was the National Advisory Committee for Aeronautics – paved the way for the Low-Boom Flight Demonstration X-plane’s nearly silent treatment of supersonic flight.

New NASA X-Plane Construction Begins Now

The answer to how the X-plane's design makes a quiet sonic boom is in the way its uniquely-shaped hull generates supersonic shockwaves. Shockwaves from a conventional aircraft design coalesce as they expand away from the airplane’s nose and tail, resulting in two distinct and thunderous sonic booms.

But the design’s shape sends those shockwaves away from the aircraft in a way that prevents them from coming together in two loud booms. Instead, the much weaker shockwaves reach the ground still separated, which will be heard as a quick series of soft thumps – again, if anyone standing outside notices them at all.

It’s an idea first theorized during the 1960s and tested by NASA and others during the years since, including flying from 2003-2004 an F-5E Tiger fighter jetmodified with a uniquely-shaped nose, which proved the boom-reducing theory was sound.

NASA’s confidence in the Low-Boom Flight Demonstration design is buoyed by its more recent research using results from the latest in wind-tunnel testing, and advanced computer simulation tools, and actual flight testing.

Recent studies have investigated methods to improve the aerodynamic efficiency of supersonic aircraft wings, and sought to better understand sonic boom propagation through the atmosphere.

Even a 150-year-old photographic technique has helped unlock the modern mysteries of supersonic shockwave behavior during the past few years.

“We’ve reached this important milestone only because of the work NASA has led with its many partners from other government agencies, the aerospace industry and forward-thinking academic institutions everywhere,” said Peter Coen, NASA’s Commercial Supersonic Technology project manager.

So now it’s time to cut metal and begin construction.

The X-plane’s configuration will be based on a preliminary design developed by Lockheed Martin under a contract awarded in 2016. The proposed aircraft will be 94 feet long with a wingspan of 29.5 feet and have a fully-fueled takeoff weight of 32,300 pounds.

The design research speed of the X-plane at a cruising altitude of 55,000 feet is Mach 1.42, or 940 mph. Its top speed will be Mach 1.5, or 990 mph. The jet will be propelled by a single General Electric F414 engine, the powerplant used by F/A-18E/F fighters.

A single pilot will be in the cockpit, which will be based on the design of the rear cockpit seat of the T-38 training jet famously used for years by NASA’s astronauts to stay proficient in high-performance aircraft.

New NASA X-Plane Construction Begins Now

Jim Less is one of the two primary NASA pilots at Armstrong who will fly the X-plane after Lockheed Martin’s pilots have completed initial test flights to make sure the design is safe to fly.

“A supersonic manned X-plane!” Less said, already eager to get his hands on the controls. “This is probably going to be a once-in-a-lifetime opportunity for me. We’re all pretty excited.”

Less is the deputy chief pilot for Low-Boom Flight Demonstration. He and his boss, chief pilot Nils Larson, have already provided some input into things like cockpit design and the development of the simulators they will use for flight training while the aircraft is under construction.

“It’s pretty rare in a test pilot’s career that he can be involved in everything from the design phase to the flight phase, and really the whole life of the program,” Less said.

The program is divided into three phases and the tentative schedule looks like this:

2019 – NASA conducts a critical design review of the low-boom X-plane configuration, which, if successful, allows final construction and assembly to be completed.

2021 – Construction of the aircraft at Lockheed Martin’s Skunk Works facility in Palmdale is completed, to be followed by a series of test flights to demonstrate the aircraft is safe to fly and meets all of NASA’s performance requirements. The aircraft is then officially delivered to NASA, completing Phase One.

2022 – Phase Two will see NASA fly the X-plane in the supersonic test range over Edwards to prove the quiet supersonic technology works as designed, its performance is robust, and it is safe for operations in the National Airspace System.

2023 to 2025 – Phase Three begins with the first community response test flights, which will be staged from Armstrong. Further community response activity will take place in four to six cities around the U.S.

All of NASA’s aeronautics research centers play a part in the Low-Boom Flight Demonstration mission, which includes construction of the demonstrator and the community overflight campaign. For the low-boom flight demonstrator itself, these are their roles:

Ames Research Center, California — configuration assessment and systems engineering.

Armstrong Flight Research Center, California — airworthiness, systems engineering, safety and mission assurance, flight/ground operations, flight systems, project management, and community response testing.

Glenn Research Center, Cleveland — configuration assessment and propulsion performance.

Langley Research Center, Virginia — systems engineering, configuration assessment and research data, flight systems, project management, and community response testing.

“There are so many people at NASA who have put in their very best efforts to get us to this point,” said Shin. “Thanks to their work so far and the work to come, we will be able to use this X-plane to generate the scientifically collected community response data critical to changing the current rules to transforming aviation!”

Jim Banke Aeronautics Research Mission Directorate

More Posts from Nasalangley and Others

9 years ago

Science At NASA

ScienceCasts: Horn-rims and Funny Stockings on the Space Station

About three quarters of ISS astronauts experience changes in the structure and function of their eyes.  An experiment on the space station called the “Fluid Shifts Study” is investigating these vision problems in space.

Visit http://science.nasa.gov/ for more.

http://www.nasa.gov/station

9 years ago

Voyager 2 Photograph of Jupiter

A Photo Of Jupiter. Took By Voyager With VGISS On July 02, 1979 At 06:01:35. Detail Page On OPUS Database.

A photo of Jupiter. Took by Voyager with VGISS on July 02, 1979 at 06:01:35. Detail page on OPUS database.

8 years ago
‘Rovie McRoverface’ Wins NASA Planetary Rover Challenge
Students from University of Oklahoma took the top prize in NASA's RASC-AL Exploration Robo-Ops competition.
9 years ago

Nine Notable Facts About the NACA

Nine Notable Facts About The NACA

The National Advisory Committee for Aeronautics (NACA) reached a major milestone in 2015.

On March 3, the agency that in 1958 would dissolve and reform as NASA celebrated its centennial.

NASA Langley, established in 1917 as the Langley Memorial Aeronautical Laboratory, was the NACA's first field center.

During the March 24 talk, Tom Crouch, senior curator of aeronautics; John Anderson, curator of aerodynamics; and Roger Launius, associate director for collections and curatorial affairs discussed the formation of the NACA, the technological breakthroughs it generated, and the evolution of its research and development model.

Here are nine of the more interesting things they shared:

1. Charles Doolittle Walcott, a self-trained scientist and the man whose efforts led to the formation of the NACA, was best known not as an aeronautics expert, but as a paleontologist. "Throughout his long career," Crouch said, "he was really one of the most effective spokesmen for science and technology in the federal government."

2. Walcott was a good friend of aviation pioneer and Wright brothers rival Samuel Pierpont Langley, who was devastated in 1903 when his Aerodrome flying machine twice failed to take flight over the Potomoc River. Langley died in 1906. "One of Charles Doolittle Walcott's aims in life was to resurrect and honor the memory of his old friend Samuel Pierpont Langley," Crouch said — so much so that he once suggested naming all airplanes Langleys. Eventually, Walcott named the Langley Memorial Aeronautical Laboratory after his friend.

3. Prior to World War I, aeronautics was not a high priority for the U.S. government. On a list of the aeronautics appropriations for 14 countries in the period from 1908 to 1913, the United States was dead last with $435,000. That put the U.S. behind Brazil, Chile, Bulgaria, Spain and Greece. Topping the list: Germany, with $28 million.

4. In the late 1920s, Fred Weick, a Langley engineer, developed what became known as the NACA cowling, a type of fairing or cover used to reduce drag on aircraft engines. The cowling also improved engine cooling. In 1929, Weick won the Collier Trophy, U.S. aviation's more prestigious award, for this innovation.

5. By the 1930s, the world had entered a golden era of aeronautics — largely due to the NACA. "The NACA was aeronautical engineering," said Anderson. And some of the most important aeronautical innovations were taking place right here at Langley Research Center. It was during the 1930s that Langley aerodynamicist Eastman Jacobs developed a systematic way of designing an airfoil. That systematic design became known as the NACA airfoil, and aircraft makers worldwide began using it.

Nine Notable Facts About The NACA

In 1934, during a high-speed wind tunnel test at Langley, a researcher named John Stack captured the first ever photograph of a shockwave on an airfoil. Credits: NASA

6. Aeronautics researchers in the 1930s were struggling to determine the cause of a peculiar phenomenon — as an object approached the speed of sound, drag greatly increased and lift drastically reduced. In 1934, a young Langley researcher named John Stack figured out why by photographing a high-speed wind tunnel test of an airfoil. The photo captured the culprit — a shockwave. It was the first time a shockwave had ever been photographed on an airfoil. "This was a dramatic intellectual contribution of the NACA that a lot of people don't really appreciate," said Anderson.

7. The woman who developed the format and style guide for the NACA's technical reports was a physicist from North Dakota named Pearl Young. She came to Langley in 1922, the first professional woman employed at the center, and was appointed Langley's first Chief Technical Editor in 1929. "The technical memorandums … became the model worldwide for how to increase knowledge and make it available to the broadest base of people that can use it," said Launius.

8. The NACA used to host an annual Aircraft Engineering Research Conference at Langley. The conferences were "a who's who of anybody involved in aeronautics in the United States," said Launius. "This interchange of information, of ideas, of concerns, becomes the critical component to fueling the research processes that led to some of the great breakthroughs of the early period before World War II." Among the notable attendees at the 1934 conference were Orville Wright, Charles Lindbergh and Howard Hughes.

Nine Notable Facts About The NACA

A photo taken in Langley's Full Scale Tunnel during the 1934 Aircraft Engineering Research Conference at Langley. Orville Wright, Charles Lindbergh and Howard Hughes were in attendance. Credits: NASA

9. Following World War II, according to Launius, the NACA began to change its "model ever so slightly," making its first forays into public-private partnerships. Perhaps the earliest example of these partnerships was the Bell X-1, a joint project between the NACA, the U.S. Air Force and Bell Aircraft Company. The Bell X-1 became the first manned aircraft to break the sound barrier.


Tags
8 years ago
At Hangar, Raptors Find Shelter From The Storm

At Hangar, Raptors Find Shelter from the Storm

As Tropical Storm Hermine charged up the East Coast Sept. 2, 2016, Langley Air Force Base reached out to the Research Services Directorate and NASA Langley Research Center hangar manager Dale Bowser to see if NASA Langley could store a few F-22 Raptors. Even though the hangar in Hampton, Virginia, already had a large visitor — a C-130 from the Wallops Flight Facility on Virginia’s Eastern Shore — the hangar was able to carefully sandwich in more than a dozen Air Force fighters and offer them protection from the wind. NASA Langley photographer David C. Bowman captured the image using a fish-eye lens and shooting down from the hangar's catwalk some 70 feet above the building's floor.

The hangar provides 85,200 square feet (7,915 square meters) of open space and large door dimensions that allow for entry of big aircraft such as Boeing 757s and other commercial or military transport-class planes. The hangar normally is home to 13 of NASA Langley's own research aircraft, when they are not out doing atmospheric science or aeronautics research. Still, there is enough space to share with neighboring Langley Air Force Base during emergencies. The facility is rated for at least a Category 2 hurricane. Built in the early 1950s, it was designed to fit a B-36. It can also accommodate the Super Guppy, which visited NASA Langley in 2014. 

Image credit: NASA/David C. Bowman


Tags
9 years ago
Curiosity Self-Portrait At Martian Sand Dune

Curiosity Self-Portrait at Martian Sand Dune

This self-portrait of NASA's Curiosity Mars rover shows the vehicle at "Namib Dune," where the rover's activities included scuffing into the dune with a wheel and scooping samples of sand for laboratory analysis.

The scene combines 57 images taken on Jan. 19, 2016, during the 1,228th Martian day, or sol, of Curiosity's work on Mars. The camera used for this is the Mars Hand Lens Imager (MAHLI) at the end of the rover's robotic arm.

Namib Dune is part of the dark-sand "Bagnold Dune Field" along the northwestern flank of Mount Sharp. Images taken from orbit have shown that dunes in the Bagnold field move as much as about 3 feet (1 meter) per Earth year.

The location of Namib Dune is show on a map of Curiosity's route athttp://mars.nasa.gov/msl/multimedia/images/?ImageID=7640. The relationship of Bagnold Dune Field to the lower portion of Mount Sharp is shown in a map at PIA16064.

The view does not include the rover's arm. Wrist motions and turret rotations on the arm allowed MAHLI to acquire the mosaic's component images. The arm was positioned out of the shot in the images, or portions of images, that were used in this mosaic. This process was used previously in acquiring and assembling Curiosity self-portraits taken at sample-collection sites, including "Rocknest" (PIA16468), "Windjana" (PIA18390) and "Buckskin" (PIA19807).

For scale, the rover's wheels are 20 inches (50 centimeters) in diameter and about 16 inches (40 centimeters) wide.

MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover.

More information about Curiosity is online at http://www.nasa.gov/msl andhttp://mars.jpl.nasa.gov/msl/.


Tags
6 years ago

Life at the Lab: Dummies Crash Planes!

Get a behind-the-scenes look at how test dummies at NASA's Langley Research Center contribute to making the planes we fly on safer and developing space exploration vehicles. Work ranges from next-generation aircraft to water-impact tests that evaluate the splashdown of Orion astronaut crew capsules returning from space. 

Credit: NASA/Videographer: Gary Banziger; Writer and Co-Producer: Lily Daniels; Editor and Co-Producer: Kevin Anderson


Tags
7 years ago

NASA Weighs, Balances Orion for Ascent Abort Test

NASA Weighs, Balances Orion For Ascent Abort Test

Researchers conducted mass property testing of the Orion crew module for the Ascent Abort Test-2 Friday, Feb. 16, at NASA's Langley Research Center in Hampton, Virginia. The crew module, built at Langley, was lifted and rotated on its side to determine its weight and center of gravity, known as balance. To get accurate results during the uncrewed flight test planned for April 2019 at Cape Canaveral Air Force Station in Florida, this simplified crew module needs to have the same outer shape and approximate mass distribution of the Orion crew module that astronauts will fly in on future missions to deep space. The markings on the sides and bottom of the capsule used for the test will allow cameras to follow the spacecraft’s trajectory as well as the orientation of the spacecraft relative to the direction of travel for data collection.

Next, it will be shipped to NASA’s Johnson Space Center in Houston where engineers will outfit it with the avionics, power, software, instrumentation and other elements needed to execute the flight test. This test will help ensure Orion’s launch abort system can carry astronauts to safety in the event of an emergency with its rocket during launch.

Image Credit: NASA/David C. Bowman


Tags
7 years ago
This Is Where They 3D Print Cool Pieces That Are Needed For The ISS! They Use Cool Carbon Fiber Materials
This Is Where They 3D Print Cool Pieces That Are Needed For The ISS! They Use Cool Carbon Fiber Materials
This Is Where They 3D Print Cool Pieces That Are Needed For The ISS! They Use Cool Carbon Fiber Materials
This Is Where They 3D Print Cool Pieces That Are Needed For The ISS! They Use Cool Carbon Fiber Materials
This Is Where They 3D Print Cool Pieces That Are Needed For The ISS! They Use Cool Carbon Fiber Materials
This Is Where They 3D Print Cool Pieces That Are Needed For The ISS! They Use Cool Carbon Fiber Materials
This Is Where They 3D Print Cool Pieces That Are Needed For The ISS! They Use Cool Carbon Fiber Materials
This Is Where They 3D Print Cool Pieces That Are Needed For The ISS! They Use Cool Carbon Fiber Materials
This Is Where They 3D Print Cool Pieces That Are Needed For The ISS! They Use Cool Carbon Fiber Materials

This is where they 3D print cool pieces that are needed for the ISS! They use cool carbon fiber materials to make the final product look smooth and flawless. They are also 3D printing that payload attachment fitting for the SLS Block 1B rocket!! I took a video of it actually printing so be on the lookout for that!

8 years ago
NASA Langley Researchers And Engineers Are:

NASA Langley researchers and engineers are:

Playing key roles in the development of both the Space Launch System and the Orion crew capsule, which will carry astronauts beyond the moon to an asteroid, and eventually to the dusty surface of the Red Planet.

Leading the aerodynamic design of the Space Launch System by doing analysis and extensive testing in facilities such as the Unitary Plan Wind Tunnel and Transonic Dynamics Tunnel.

Performing water impact testing and doing critical aerosciences and structural analyses for the Orion crew capsule. We also assist in analyzing and practicing recovery operations for Orion.

Developing Orion's Launch Abort System, or LAS, which is designed to protect astronauts in the unlikely event a problem arises during launch.

Spearheading work on advanced entry, descent, and landing (EDL) systems for planetary robotic missions and eventual human-scale missions to the surface of Mars. Understanding the aerodynamics and heating of atmospheric entry will enable more precise landing missions, while testing of new technologies will enable much larger missions to reach the Martian surface.

Developing safe and reliable autonomous systems to supplement human operations, including mechanisms that can work in deep space to maneuver, assemble and service structures. In the 2020s, NASA plans to use this kind of technology to retrieve an asteroid.

Leading the development of materials and structures for lightweight and affordable space transportation and habitation systems.

Solving the problems of deep space radiation protection, including leadership of the Human Research Program to develop a better understanding of space radiation on crew health and safety. Langley is also building prototype designs for habitats and storm shelters for use in space.

Working on sensor systems, known as Autonomous Landing Hazard Avoidance Technology (ALHAT), that will equip future planetary landers with the ability to assess landing hazards and land safely and precisely on many different planetary surfaces, including the moon, Mars and other planetary bodies.

Developing the Hypersonic Inflatable Aerodynamic Decelerator, or HIAD, a device that could some day help cargo, or even people, land on another planet. HIAD could give NASA more options for future planetary missions, because it could allow spacecraft to carry larger, heavier scientific instruments and other tools for exploration.


Tags
Loading...
End of content
No more pages to load
  • buellbill
    buellbill liked this · 6 years ago
  • blackchicagoskills23
    blackchicagoskills23 liked this · 6 years ago
  • creep9876-blog
    creep9876-blog liked this · 6 years ago
  • jovialdelusionfun-blog1
    jovialdelusionfun-blog1 liked this · 6 years ago
  • kijibumk
    kijibumk liked this · 6 years ago
  • joart2891
    joart2891 liked this · 6 years ago
  • douglasw
    douglasw reblogged this · 6 years ago
  • douglasw
    douglasw liked this · 6 years ago
  • 867uconn
    867uconn liked this · 6 years ago
  • tiger0554
    tiger0554 liked this · 6 years ago
  • mfelicori
    mfelicori liked this · 6 years ago
  • taadol
    taadol liked this · 7 years ago
  • earl29
    earl29 liked this · 7 years ago
  • hironakamura69
    hironakamura69 liked this · 7 years ago
  • reallytalltex
    reallytalltex liked this · 7 years ago
  • dyalani
    dyalani reblogged this · 7 years ago
  • markoberposts
    markoberposts reblogged this · 7 years ago
  • markoberposts
    markoberposts liked this · 7 years ago
  • biffarunni
    biffarunni reblogged this · 7 years ago
  • the-telescope-times
    the-telescope-times liked this · 7 years ago
  • throned7
    throned7 liked this · 7 years ago
  • rain-clouds-and-silver-lightning
    rain-clouds-and-silver-lightning reblogged this · 7 years ago
  • cyber12
    cyber12 liked this · 7 years ago
  • italian-landscapes
    italian-landscapes liked this · 7 years ago
  • anyelomercado-blog
    anyelomercado-blog liked this · 7 years ago
  • snag1361
    snag1361 liked this · 7 years ago
  • crusnik91
    crusnik91 liked this · 7 years ago
  • waceycah
    waceycah liked this · 7 years ago
  • moonlit-gal
    moonlit-gal liked this · 7 years ago
  • grievance-s
    grievance-s liked this · 7 years ago
  • andromeda1023
    andromeda1023 reblogged this · 7 years ago
  • andromeda1023
    andromeda1023 reblogged this · 7 years ago
nasalangley - NASA Langley Research Center
NASA Langley Research Center

Hampton, VA

94 posts

Explore Tumblr Blog
Search Through Tumblr Tags