Voyager 2 Photograph of Jupiter
A photo of Jupiter. Took by Voyager with VGISS on July 02, 1979 at 06:01:35. Detail page on OPUS database.
The National Advisory Committee for Aeronautics (NACA) reached a major milestone in 2015.
On March 3, the agency that in 1958 would dissolve and reform as NASA celebrated its centennial.
NASA Langley, established in 1917 as the Langley Memorial Aeronautical Laboratory, was the NACA's first field center.
During the March 24 talk, Tom Crouch, senior curator of aeronautics; John Anderson, curator of aerodynamics; and Roger Launius, associate director for collections and curatorial affairs discussed the formation of the NACA, the technological breakthroughs it generated, and the evolution of its research and development model.
Here are nine of the more interesting things they shared:
1. Charles Doolittle Walcott, a self-trained scientist and the man whose efforts led to the formation of the NACA, was best known not as an aeronautics expert, but as a paleontologist. "Throughout his long career," Crouch said, "he was really one of the most effective spokesmen for science and technology in the federal government."
2. Walcott was a good friend of aviation pioneer and Wright brothers rival Samuel Pierpont Langley, who was devastated in 1903 when his Aerodrome flying machine twice failed to take flight over the Potomoc River. Langley died in 1906. "One of Charles Doolittle Walcott's aims in life was to resurrect and honor the memory of his old friend Samuel Pierpont Langley," Crouch said — so much so that he once suggested naming all airplanes Langleys. Eventually, Walcott named the Langley Memorial Aeronautical Laboratory after his friend.
3. Prior to World War I, aeronautics was not a high priority for the U.S. government. On a list of the aeronautics appropriations for 14 countries in the period from 1908 to 1913, the United States was dead last with $435,000. That put the U.S. behind Brazil, Chile, Bulgaria, Spain and Greece. Topping the list: Germany, with $28 million.
4. In the late 1920s, Fred Weick, a Langley engineer, developed what became known as the NACA cowling, a type of fairing or cover used to reduce drag on aircraft engines. The cowling also improved engine cooling. In 1929, Weick won the Collier Trophy, U.S. aviation's more prestigious award, for this innovation.
5. By the 1930s, the world had entered a golden era of aeronautics — largely due to the NACA. "The NACA was aeronautical engineering," said Anderson. And some of the most important aeronautical innovations were taking place right here at Langley Research Center. It was during the 1930s that Langley aerodynamicist Eastman Jacobs developed a systematic way of designing an airfoil. That systematic design became known as the NACA airfoil, and aircraft makers worldwide began using it.
In 1934, during a high-speed wind tunnel test at Langley, a researcher named John Stack captured the first ever photograph of a shockwave on an airfoil. Credits: NASA
6. Aeronautics researchers in the 1930s were struggling to determine the cause of a peculiar phenomenon — as an object approached the speed of sound, drag greatly increased and lift drastically reduced. In 1934, a young Langley researcher named John Stack figured out why by photographing a high-speed wind tunnel test of an airfoil. The photo captured the culprit — a shockwave. It was the first time a shockwave had ever been photographed on an airfoil. "This was a dramatic intellectual contribution of the NACA that a lot of people don't really appreciate," said Anderson.
7. The woman who developed the format and style guide for the NACA's technical reports was a physicist from North Dakota named Pearl Young. She came to Langley in 1922, the first professional woman employed at the center, and was appointed Langley's first Chief Technical Editor in 1929. "The technical memorandums … became the model worldwide for how to increase knowledge and make it available to the broadest base of people that can use it," said Launius.
8. The NACA used to host an annual Aircraft Engineering Research Conference at Langley. The conferences were "a who's who of anybody involved in aeronautics in the United States," said Launius. "This interchange of information, of ideas, of concerns, becomes the critical component to fueling the research processes that led to some of the great breakthroughs of the early period before World War II." Among the notable attendees at the 1934 conference were Orville Wright, Charles Lindbergh and Howard Hughes.
A photo taken in Langley's Full Scale Tunnel during the 1934 Aircraft Engineering Research Conference at Langley. Orville Wright, Charles Lindbergh and Howard Hughes were in attendance. Credits: NASA
9. Following World War II, according to Launius, the NACA began to change its "model ever so slightly," making its first forays into public-private partnerships. Perhaps the earliest example of these partnerships was the Bell X-1, a joint project between the NACA, the U.S. Air Force and Bell Aircraft Company. The Bell X-1 became the first manned aircraft to break the sound barrier.
The Vehicle Assembly Building (VAB) is one of the largest buildings in the world (525 ft 10 in tall, 716 ft long, and 518 ft wide) . It was originally built for assembly of Apollo/Saturn vehicles and was later modified to support Space Shuttle operations and now, Space Launch System rocket and Orion spacecraft for Exploration Mission 1.
In this view looking up from the floor of the VAB at NASA’s Kennedy Space Center in Florida, four levels of new work platforms are now installed on the north and south sides of High Bay 3. The G-level work platforms were most recently installed, at about the 14th floor level. Below them are the H, J and K level platforms.
The G-level work platforms are the fourth of 10 levels of work platforms that will surround and provide access to SLS. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s journey to Mars.
Anna Fox, a seventh-grader from Virginia Beach Middle School in Virginia Beach, Virginia, was named as the grand prize winner of Langley Research Center’s Student Art Contest.
“I was very excited when I heard that I won first place for my grade,” Anna said. “But when I heard that I won grand prize, I was speechless.”
A record 831 entries were submitted from hundreds of children in 39 states, the District of Columbia and Puerto Rico, with 13 students earning first-place honors in grade levels K-12 and the opportunity to be considered for the grand prize, said Kristina Cors, Langley Student Art Contest coordinator.
“We hope this contest continues to grow and provide a place for students to explore science and technology through creativity,” she said.
“I was very excited when I heard that I won first place for my grade,” Anna Fox said. “But when I heard that I won grand prize, I was speechless.”
Credits: Courtesy of Anne Baker
The art contest theme, “The Next 100 Years,” was intended to illustrate how NASA research and innovation propels science to new discoveries.
“This year’s artwork was particularly remarkable, and represented the theme ‘The Next 100 Years’ with imagination and immense talent,” Cors said.
Anna’s winning piece shows a deep-space scene with an astronaut planting a flag on a planet’s mountain while watching a rocket fly off in the distance in a sky populated by stars, galaxies and a moon.
“When I started drawing, I had no idea what to do, so I had looked at a bunch of videos on how to do galaxies for inspiration,” Anna said. “After that I randomly placed colors together until I found something I liked. It all started coming together from there.”
Once she got an idea in motion, Anna did her work using old and new techniques.
“I created my artwork digitally on Photoshop,” Anna said. “I had started with basic colors for the background, including the explosion behind the rocks. Then, on another layer I created the rocks, planet, astronaut and rocket ship taking off. Later I added detail on all the layers to look more realistic. The last step was to add all of the stars and galaxies, which I did with a special brush.”
Anna, who has been an artist for as long as she could pick up a pencil, said she started drawing digitally when she was 11, inspired by her father’s work on a computer.
“I think the best part of creating art is having fun with it and inspiring others to do art as well,” she said.
Anna said she always had an interest in space and the art contest was a perfect vehicle to express that.
“I think that the coolest thing about NASA is that they help so many people achieve their dreams, and send people to do what not a lot of people get to do,” Anna said.
For her grand-prize victory, Anna received a certificate, and a NASA Exploration Package of posters, pens, stickers, patches and lapel pins. Her artwork will be displayed at the Virginia Air & Space Center in Hampton, Virginia.
The 13 grade-level winners were selected by a panel of five judges from the Hampton Roads art community, and the grand champion was picked by Langley employees. Each piece was evaluated on originality, interpretation of subject matter/theme, creative techniques, composition and overall art appearance.
Eric Gillard NASA Langley Research Center
Eagle Nebula
via reddit
Get a behind-the-scenes look at how test dummies at NASA's Langley Research Center contribute to making the planes we fly on safer and developing space exploration vehicles. Work ranges from next-generation aircraft to water-impact tests that evaluate the splashdown of Orion astronaut crew capsules returning from space.
Credit: NASA/Videographer: Gary Banziger; Writer and Co-Producer: Lily Daniels; Editor and Co-Producer: Kevin Anderson
Engineers at NASA's Langley Research Center in Hampton, Virginia, used lasers inside the 14- by 22-Foot Subsonic Tunnel to map how air flows over a Boeing Blended Wing Body (BWB) model – a greener, quieter airplane design under development. The name for the technique is called particle image velocimetry. If you look closely you can see the light bouncing off tracer particles. Cameras record the movement of those particles as the laser light pulses across the model. This allows researchers to accurately measure the flow over the model once the images are processed. A smoother flow over the wing means less fuel will be needed to power the aircraft.
Image credit: NASA/David C. Bowman
Click on the link to the full article to see how NASA’s Langley Research Center is changing the way we conceptualize commercial flight!
Edwards AFB CA (SPX) Feb 19, 2016 NASA is researching ideas that could lead to developing an electric propulsion-powered aircraft that would be quieter, more efficient and environmentally friendly than today’s commuter aircraft. The proposed piloted experimental airplane is called Sceptor, short for the Scalable Convergent Electric Propulsion Technology and Operations Research. The concept involves removing the wing from a Full article
Pan (moon of Saturn) - March 07 2017
NASA/JPL-Caltech/SSI/Kevin M. Gill
https://www.nasa.gov/content/katherine-johnson-biography
Date of Birth: August 26, 1918 Hometown: White Sulphur Springs, WV Education: B.S., Mathematics and French, West Virginia State College, 1937 Hired by NACA: June 1953 Retired from NASA: 1986 Actress Playing Role in Hidden Figures: Taraji P. Henson
Being handpicked to be one of three black students to integrate West Virginia’s graduate schools is something that many people would consider one of their life’s most notable moments, but it’s just one of several breakthroughs that have marked Katherine Johnson’s long and remarkable life. Born in White Sulphur Springs, West Virginia in 1918, Katherine Johnson’s intense curiosity and brilliance with numbers vaulted her ahead several grades in school. By thirteen, she was attending the high school on the campus of historically black West Virginia State College. At eighteen, she enrolled in the college itself, where she made quick work of the school’s math curriculum and found a mentor in math professor W. W. Schieffelin Claytor, the third African American to earn a PhD in Mathematics. Katherine graduated with highest honors in 1937 and took a job teaching at a black public school in Virginia.
When West Virginia decided to quietly integrate its graduate schools in 1939, West Virginia State’s president Dr. John W. Davis selected Katherine and two male students as the first black students to be offered spots at the state’s flagship school, West Virginia University. Katherine left her teaching job, and enrolled in the graduate math program. At the end of the first session, however, she decided to leave school to start a family with her husband. She returned to teaching when her three daughters got older, but it wasn’t until 1952 that a relative told her about open positions at the all-black West Area Computing section at the National Advisory Committee for Aeronautics’ (NACA’s) Langley laboratory, headed by fellow West Virginian Dorothy Vaughan. Katherine and her husband, James Goble, decided to move the family to Newport News to pursue the opportunity, and Katherine began work at Langley in the summer of 1953. Just two weeks into Katherine’s tenure in the office, Dorothy Vaughan assigned her to a project in the Maneuver Loads Branch of the Flight Research Division, and Katherine’s temporary position soon became permanent. She spent the next four years analyzing data from flight test, and worked on the investigation of a plane crash caused by wake turbulence. As she was wrapping up this work her husband died of cancer in December 1956.
The 1957 launch of the Soviet satellite Sputnik changed history—and Katherine Johnson’s life. In 1957, Katherine provided some of the math for the 1958 document Notes on Space Technology, a compendium of a series of 1958 lectures given by engineers in the Flight Research Division and the Pilotless Aircraft Research Division (PARD). Engineers from those groups formed the core of the Space Task Group, the NACA’s first official foray into space travel, and Katherine, who had worked with many of them since coming to Langley, “came along with the program” as the NACA became NASA later that year. She did trajectory analysis for Alan Shepard’s May 1961 mission Freedom 7, America’s first human spaceflight. In 1960, she and engineer Ted Skopinski coauthored Determination of Azimuth Angle at Burnout for Placing a Satellite Over a Selected Earth Position, a report laying out the equations describing an orbital spaceflight in which the landing position of the spacecraft is specified. It was the first time a woman in the Flight Research Division had received credit as an author of a research report.
In 1962, as NASA prepared for the orbital mission of John Glenn, Katherine Johnson was called upon to do the work that she would become most known for. The complexity of the orbital flight had required the construction of a worldwide communications network, linking tracking stations around the world to IBM computers in Washington, DC, Cape Canaveral, and Bermuda. The computers had been programmed with the orbital equations that would control the trajectory of the capsule in Glenn’s Friendship 7 mission, from blast off to splashdown, but the astronauts were wary of putting their lives in the care of the electronic calculating machines, which were prone to hiccups and blackouts. As a part of the preflight checklist, Glenn asked engineers to “get the girl”—Katherine Johnson—to run the same numbers through the same equations that had been programmed into the computer, but by hand, on her desktop mechanical calculating machine. “If she says they’re good,’” Katherine Johnson remembers the astronaut saying, “then I’m ready to go.” Glenn’s flight was a success, and marked a turning point in the competition between the United States and the Soviet Union in space.
When asked to name her greatest contribution to space exploration, Katherine Johnson talks about the calculations that helped synch Project Apollo’s Lunar Lander with the moon-orbiting Command and Service Module. She also worked on the Space Shuttle and the Earth Resources Satellite, and authored or coauthored 26 research reports. She retired in 1986, after thirty-three years at Langley. “I loved going to work every single day,” she says. In 2015, at age 97, Katherine Johnson added another extraordinary achievement to her long list: President Obama awarded her the Presidential Medal of Freedom, America’s highest civilian honor.
Biography by Margot Lee Shetterly
https://www.nasa.gov/content/katherine-johnson-biography
The California Current System
This February 8, 2016 composite image reveals the complex distribution of phytoplankton in one of Earth’s eastern boundary upwelling systems — the California Current. Recent work suggests that our warming climate my be increasing the intensity of upwelling in such regions with possible repercussions for the species that comprise those ecosystems.
NASA’s OceanColor Web is supported by the Ocean Biology Processing Group (OBPG) at NASA’s Goddard Space Flight Center. Our responsibilities include the collection, processing, calibration, validation, archive and distribution of ocean-related products from a large number of operational, satellite-based remote-sensing missions providing ocean color, sea surface temperature and sea surface salinity data to the international research community since 1996.
Credit: NASA/Goddard/Suomin-NPP/VIIRS #California #nasagoddard #earth #ocean