NASA Langley researchers and engineers are:
Playing key roles in the development of both the Space Launch System and the Orion crew capsule, which will carry astronauts beyond the moon to an asteroid, and eventually to the dusty surface of the Red Planet.
Leading the aerodynamic design of the Space Launch System by doing analysis and extensive testing in facilities such as the Unitary Plan Wind Tunnel and Transonic Dynamics Tunnel.
Performing water impact testing and doing critical aerosciences and structural analyses for the Orion crew capsule. We also assist in analyzing and practicing recovery operations for Orion.
Developing Orion's Launch Abort System, or LAS, which is designed to protect astronauts in the unlikely event a problem arises during launch.
Spearheading work on advanced entry, descent, and landing (EDL) systems for planetary robotic missions and eventual human-scale missions to the surface of Mars. Understanding the aerodynamics and heating of atmospheric entry will enable more precise landing missions, while testing of new technologies will enable much larger missions to reach the Martian surface.
Developing safe and reliable autonomous systems to supplement human operations, including mechanisms that can work in deep space to maneuver, assemble and service structures. In the 2020s, NASA plans to use this kind of technology to retrieve an asteroid.
Leading the development of materials and structures for lightweight and affordable space transportation and habitation systems.
Solving the problems of deep space radiation protection, including leadership of the Human Research Program to develop a better understanding of space radiation on crew health and safety. Langley is also building prototype designs for habitats and storm shelters for use in space.
Working on sensor systems, known as Autonomous Landing Hazard Avoidance Technology (ALHAT), that will equip future planetary landers with the ability to assess landing hazards and land safely and precisely on many different planetary surfaces, including the moon, Mars and other planetary bodies.
Developing the Hypersonic Inflatable Aerodynamic Decelerator, or HIAD, a device that could some day help cargo, or even people, land on another planet. HIAD could give NASA more options for future planetary missions, because it could allow spacecraft to carry larger, heavier scientific instruments and other tools for exploration.
NASA astronaut Suni Williams cannonballs off a Boeing CST-100 Starliner test article after NASA engineers and Air Force pararescuemen climbed aboard the spacecraft to simulate rescuing astronauts in the event of an emergency during launch or ascent.
The Starliner is designed for land-based returns, but simulating rescue operations at NASA’s Langley Research Center’s Hydro Impact Basin in Hampton, Virginia, ensures flight crew and ground support are versed in what to do during a contingency scenario.
For more information about rescue and safety operations, see Commercial Crew: Building in Safety from the Ground Up in a Unique Way.
Credit: NASA/David C. Bowman
NASA is calling all space enthusiasts to send their artistic endeavors on a journey aboard NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft. This will be the first U.S. mission to collect a sample of an asteroid and return it to Earth for study.
OSIRIS-REx is scheduled to launch in September and travel to the asteroid Bennu. The #WeTheExplorers campaign invites the public to take part in this mission by expressing, through art, how the mission’s spirit of exploration is reflected in their own lives. Submitted works of art will be saved on a chip on the spacecraft. The spacecraft already carries a chip with more than 442,000 names submitted through the 2014 “Messages to Bennu” campaign.
“The development of the spacecraft and instruments has been a hugely creative process, where ultimately the canvas is the machined metal and composites preparing for launch in September,” said Jason Dworkin, OSIRIS-REx project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It is fitting that this endeavor can inspire the public to express their creativity to be carried by OSIRIS-REx into space.”
A submission may take the form of a sketch, photograph, graphic, poem, song, short video or other creative or artistic expression that reflects what it means to be an explorer. Submissions will be accepted via Twitter and Instagram until March 20. For details on how to include your submission on the mission to Bennu, go to:
http://www.asteroidmission.org/WeTheExplorers
“Space exploration is an inherently creative activity,” said Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson. “We are inviting the world to join us on this great adventure by placing their art work on the OSIRIS-REx spacecraft, where it will stay in space for millennia.”
The spacecraft will voyage to the near-Earth asteroid Bennu to collect a sample of at least 60 grams (2.1 ounces) and return it to Earth for study. Scientists expect Bennu may hold clues to the origin of the solar system and the source of the water and organic molecules that may have made their way to Earth.
Goddard provides overall mission management, systems engineering and safety and mission assurance for OSIRIS-REx. The University of Arizona, Tucson leads the science team and observation planning and processing. Lockheed Martin Space Systems in Denver is building the spacecraft. OSIRIS-REx is the third mission in NASA's New Frontiers Program. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages New Frontiers for the agency's Science Mission Directorate in Washington.
For more information on OSIRIS-Rex, visit:
http://www.nasa.gov/osiris-rex
NASA centers across the country, including the Langley Research Center in Hampton, Virginia, are opening their doors Monday, Feb. 12, to media and social media for 'State of NASA' events.
Activities include a speech from acting NASA Administrator Robert Lightfoot, and unique opportunities for a behind-the-scenes look at the agency's work. These events follow President Trump's Fiscal Year 2019 budget proposal delivery to the U.S. Congress.
Events at NASA centers will include media tours and presentations on the agency's exploration goals for the Moon, Mars and worlds beyond, the innovative technologies developed and under development, as well as the scientific discoveries made as NASA explores and studies Earth and our universe, and advancements toward next-generation air travel.
Lightfoot will provide a 'State of NASA' address to the agency's workforce at 1 p.m. EST from Marshall Space Flight Center in Huntsville, Alabama. His remarks will air live on NASA Television and the agency's website, https://www.nasa.gov/live. Following the presentation, NASA centers will host tours of their facilities for media and social media guests.
At Langley, the news and social media event will run from 1 to 5 p.m. and include:
A look at the SAGE III flight control center. SAGE III is the Stratospheric Aerosol and Gas Experiment III studying Earth's atmosphere from the International Space Station.
A visit to the research aircraft hangar to see aircraft that are used in support of airborne research campaigns, as well as an inflatable heat shield that will enable landing on distant worlds.
A view of the labs where sonic-boom testing is being done to lower their impact so that commercial aircraft can be developed to fly supersonically over land.
A tour in a lab where inflatable space structures are being developed.
Follow the hashtag #StateOfNASA for more!
Check out what goes on at our Hydro Impact Basin Facility at the NASA Langley Research Center! This steel structure was once our Lunar Landing Research Facility for the Apollo missions.
Commercial Crew Partner Boeing Tests Starliner Spacecraft
Engineers from NASA’s Langley Research Center in Hampton, Virginia, and Boeing dropped a full-scale test article of the company’s CST-100 Starliner into Langley’s 20-foot-deep Hydro Impact Basin. Although the spacecraft is designed to land on land, Boeing is testing the Starliner’s systems in water to ensure astronaut safety in the unlikely event of an emergency during launch or ascent. Testing allows engineers to understand the performance of the spacecraft when it hits the water, how it will right itself and how to handle rescue and recovery operations. The test is part of the qualification phase of testing and evaluation for the Starliner system to ensure it is ready to carry astronauts to and from the International Space Station.
Image Credit: NASA/David C. Bowman
NASA Astronomy Picture of the Day 2016 April 6
Jupiter has auroras. Like near the Earth, the magnetic field of our Solar System’s largest planet compresses when impacted by a gust of charged particles from the Sun. This magnetic compression funnels charged particles towards Jupiter’s poles and down into the atmosphere. There, electrons are temporarily excited or knocked away from atmospheric gases, after which, when de-exciting or recombining with atmospheric ions, auroral light is emitted. The featured illustration portrays the magnificent magnetosphere around Jupiter in action. In the inset image released last month, the Earth-orbiting Chandra X-ray Observatory shows unexpectedly powerful X-ray light emitted by Jovian auroras, depicted in false-colored purple. That Chandra inset is superposed over an optical image taken at a different time by the Hubble Space Telescope. This aurora on Jupiter was seen in October 2011, several days after the Sun emitted a powerful Coronal Mass Ejection (CME).
In 2018, we’re launching the world’s biggest space telescope ever - the James Webb Space Telescope. Webb will look back in time, studying the very first galaxies ever formed. While Webb doesn’t have a tube like your typical backyard telescope, because it’s also a reflector telescope it has many of the same parts! Webb has mirrors (including a primary and a secondary) just like a small reflector telescope, only its mirrors are massive (6.5 meters across) and coated in gold (which helps us reflect infrared light).
How does a reflector telescope work? Light is bounced from the primary to the smaller secondary mirror, and then directed to your eye:
Webb works pretty much the same way!
Taking the place of your eye to the eyepiece is a package of science instruments, including cameras and spectrographs, which will capture the light directed into them by the telescope’s mirrors.
In order to install these instruments, we had to move the telescope structure upside down… an impressive sight!
Once Webb was in place on the assembly stand in the cleanroom, the team at Goddard Space Flight Center installed the instrument module (which we call the ISIM, or Integrated Science Instrument Module), with surgical precision. ISIM has four instruments, three of which were contributed by our partners, the European Space Agency and the Canadian Space Agency.
All four will detect infrared light from stars and galaxies as far away as 13.6 billion light years. In addition to seeing these first sources of light in the early Universe, Webb will look at stars and planetary systems being formed in clouds of dust and gas. It will also examine the atmospheres of planets around other stars – perhaps we will find an atmosphere similar to Earth’s!
Here is an image with the science instruments being lowered into their spot behind the primary mirror. You can see the golden mirror is face-down.
Here’s another perspective of the instruments being fit into the telescope.
What you’ve seen come together above is just the telescope part of the James Webb Space Telescope mission – next comes putting together the rest of the observatory. This includes our massive tennis court-sized sunshield (which acts like the tube-part of your backyard telescope, protecting the mirrors from stray light and heat), as well as the parts that do things like power the telescope and let us communicate with it.
It actually takes several weeks for Webb to completely unfold into its full deployment!
Follow us on Twitter, Facebook and Instagram for updates on our progress. You can also visit our site for more information: http://jwst.nasa.gov
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Photo Credit #1: NASA/Chris Gunn. Photo Credit #2: NASA/Desiree Stover
Researchers conducted mass property testing of the Orion crew module for the Ascent Abort Test-2 Friday, Feb. 16, at NASA's Langley Research Center in Hampton, Virginia. The crew module, built at Langley, was lifted and rotated on its side to determine its weight and center of gravity, known as balance. To get accurate results during the uncrewed flight test planned for April 2019 at Cape Canaveral Air Force Station in Florida, this simplified crew module needs to have the same outer shape and approximate mass distribution of the Orion crew module that astronauts will fly in on future missions to deep space. The markings on the sides and bottom of the capsule used for the test will allow cameras to follow the spacecraft’s trajectory as well as the orientation of the spacecraft relative to the direction of travel for data collection.
Next, it will be shipped to NASA’s Johnson Space Center in Houston where engineers will outfit it with the avionics, power, software, instrumentation and other elements needed to execute the flight test. This test will help ensure Orion’s launch abort system can carry astronauts to safety in the event of an emergency with its rocket during launch.
Image Credit: NASA/David C. Bowman
This composite image shows suspected plumes of water vapor erupting at the 7 o’clock position off the limb of Jupiter’s moon Europa. The plumes, photographed by NASA’s Hubble’s Space Telescope Imaging Spectrograph, were seen in silhouette as the moon passed in front of Jupiter. Hubble’s ultraviolet sensitivity allowed for the features -- rising over 100 miles (160 kilometers) above Europa’s icy surface -- to be discerned. The water is believed to come from a subsurface ocean on Europa. The Hubble data were taken on January 26, 2014. The image of Europa, superimposed on the Hubble data, is assembled from data from the Galileo and Voyager missions.Credits: NASA/ESA/W. Sparks (STScI)/USGS Astrogeology Science Center
Astronomers using NASA's Hubble Space Telescope have imaged what may be water vapor plumes erupting off the surface of Jupiter's moon Europa. This finding bolsters other Hubble observations suggesting the icy moon erupts with high altitude water vapor plumes.
The observation increases the possibility that missions to Europa may be able to sample Europa’s ocean without having to drill through miles of ice.
“Europa’s ocean is considered to be one of the most promising places that could potentially harbor life in the solar system,” said Geoff Yoder, acting associate administrator for NASA’s Science Mission Directorate in Washington. “These plumes, if they do indeed exist, may provide another way to sample Europa’s subsurface.”
The plumes are estimated to rise about 125 miles (200 kilometers) before, presumably, raining material back down onto Europa's surface. Europa has a huge global ocean containing twice as much water as Earth’s oceans, but it is protected by a layer of extremely cold and hard ice of unknown thickness. The plumes provide a tantalizing opportunity to gather samples originating from under the surface without having to land or drill through the ice.
The team, led by William Sparks of the Space Telescope Science Institute (STScI) in Baltimore observed these finger-like projections while viewing Europa's limb as the moon passed in front of Jupiter.
The original goal of the team's observing proposal was to determine whether Europa has a thin, extended atmosphere, or exosphere. Using the same observing method that detects atmospheres around planets orbiting other stars, the team realized if there was water vapor venting from Europa’s surface, this observation would be an excellent way to see it.
"The atmosphere of an extrasolar planet blocks some of the starlight that is behind it," Sparks explained. "If there is a thin atmosphere around Europa, it has the potential to block some of the light of Jupiter, and we could see it as a silhouette. And so we were looking for absorption features around the limb of Europa as it transited the smooth face of Jupiter."
In 10 separate occurrences spanning 15 months, the team observed Europa passing in front of Jupiter. They saw what could be plumes erupting on three of these occasions.
This work provides supporting evidence for water plumes on Europa. In 2012, a team led by Lorenz Roth of the Southwest Research Institute in San Antonio, detected evidence of water vapor erupting from the frigid south polar region of Europa and reaching more than 100 miles (160 kilometers) into space. Although both teams used Hubble's Space Telescope Imaging Spectrograph instrument, each used a totally independent method to arrive at the same conclusion.
"When we calculate in a completely different way the amount of material that would be needed to create these absorption features, it's pretty similar to what Roth and his team found," Sparks said. "The estimates for the mass are similar, the estimates for the height of the plumes are similar. The latitude of two of the plume candidates we see corresponds to their earlier work."
But as of yet, the two teams have not simultaneously detected the plumes using their independent techniques. Observations thus far have suggested the plumes could be highly variable, meaning that they may sporadically erupt for some time and then die down. For example, observations by Roth’s team within a week of one of the detections by Sparks’ team failed to detect any plumes.
If confirmed, Europa would be the second moon in the solar system known to have water vapor plumes. In 2005, NASA's Cassini orbiter detected jets of water vapor and dust spewing off the surface of Saturn's moon Enceladus.
Scientists may use the infrared vision of NASA’s James Webb Space Telescope, which is scheduled to launch in 2018, to confirm venting or plume activity on Europa. NASA also is formulating a mission to Europa with a payload that could confirm the presence of plumes and study them from close range during multiple flybys.
“Hubble’s unique capabilities enabled it to capture these plumes, once again demonstrating Hubble’s ability to make observations it was never designed to make,” said Paul Hertz, director of the Astrophysics Division at NASA Headquarters in Washington. “This observation opens up a world of possibilities, and we look forward to future missions -- such as the James Webb Space Telescope -- to follow up on this exciting discovery.”
The work by Sparks and his colleagues will be published in the Sept. 29 issue of the Astrophysical Journal.
The Hubble Space Telescope is a project of international cooperation between NASA and ESA (the European Space Agency.) NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. STScI, which is operated for NASA by the Association of Universities for Research in Astronomy in Washington, conducts Hubble science operations.
For images and more information about Europa and Hubble, visit:
http://www.nasa.gov/hubble & http://hubblesite.org/news/2016/33
Sean Potter / Laurie Cantillo Headquarters, Washington 202-358-1536 / 202-358-1077 sean.potter@nasa.gov / laura.l.cantillo@nasa.gov
Ann Jenkins / Ray Villard Space Telescope Science Institute, Baltimore 410-338-4488 / 410-338-4514 jenkins@stsci.edu / villard@stsci.edu
RELEASE 16-096
A lone source shines out brightly from the dark expanse of deep space, glowing softly against a picturesque backdrop of distant stars and colorful galaxies.
Captured by the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys (ACS), this scene shows PGC 83677, a lenticular galaxy — a galaxy type that sits between the more familiar elliptical and spiral varieties.
It reveals both the relatively calm outskirts and intriguing core of PGC 83677. Here, studies have uncovered signs of a monstrous black hole that is spewing out high-energy X-rays and ultraviolet light.
Text Credit: ESA (European Space Agency)
NASA Langley researchers are experts in modeling and simulations for entry, descent and landing, working on missions since the Viking lander in 1976. In this episode, we explore the challenges of guiding landers like Mars InSight through the Martian atmosphere for a safe landing.
NASA InSight launched on March 5, 2018.
For more, visit https://mars.nasa.gov/insight/