NASA Astronomy Picture of the Day 2016 April 6
Jupiter has auroras. Like near the Earth, the magnetic field of our Solar System’s largest planet compresses when impacted by a gust of charged particles from the Sun. This magnetic compression funnels charged particles towards Jupiter’s poles and down into the atmosphere. There, electrons are temporarily excited or knocked away from atmospheric gases, after which, when de-exciting or recombining with atmospheric ions, auroral light is emitted. The featured illustration portrays the magnificent magnetosphere around Jupiter in action. In the inset image released last month, the Earth-orbiting Chandra X-ray Observatory shows unexpectedly powerful X-ray light emitted by Jovian auroras, depicted in false-colored purple. That Chandra inset is superposed over an optical image taken at a different time by the Hubble Space Telescope. This aurora on Jupiter was seen in October 2011, several days after the Sun emitted a powerful Coronal Mass Ejection (CME).
Skywatchers in the western hemisphere will see a rare sight on Monday: over the course of several hours, the silhouette of the planet Mercury will appear to cross the face of the Sun. The “transit” of Mercury results from the precise alignment of the orbits of Mercury and Earth that only happens either 13 or 14 times per century; usually the orbital alignment is weak, and as seen from our planet Mercury “misses” the Sun’s disk as it orbits once every 88 days. But on Monday, the view through a properly-shielded telescope will reveal the innermost planet as a dark, perfectly circular spot that moves completely across the Sun in exactly seven and a half hours.
Because of the specifics of our respective orbits, Mercury transits only happen in either the months of May or November, with average dates of 8th May and 10th November. May transits happen less frequently than November transits because during May, Mercury is closer to its largest distance from the Sun, while in November the opposite is true. As a result, the range of possible angles between the Sun and Mercury, as seen from Earth, is smaller in November than May. While the interval between successive November transits can be either 7, 13 or 33 years, May transits are less common, with successive appearances in either 13- or 33-year intervals.
Observations of Mercury transits reach back to at least the seventeenth century. Observations from earlier than this are unlikely because the apparent size of Mercury’s silhouette against the Sun is too small for the unaided eye to resolve. This is why the first recorded Mercury transit — by the French astronomer Pierre Gassendi on 7 November 1631 — dates to after Galileo Galilei’s invention of the telescope in about 1609. Johannes Kepler earlier understood that Mercury’s orbit should periodically take it in front of the Sun, but he died in 1630 before being able to observe a predicted transit.
While these events once had great scientific interest, they are now mainly curiosities that delight astronomy aficionados. Rarer still are transits of Venus across the Sun, the last of which took place in 2012. These events come in pairs separated by 113 years, meaning that most people alive now will not be around to see the next one in December 2117.
Who can see Monday’s event? That depends on the hour of day and which side of the Earth faces the Sun at the time. The map below indicates which parts of the world see either all, some, or none of the transit:
You’ll need at least a good pair of binoculars or a telescope — properly shielded with a heavy filer to prevent eye damage — to even sense Mercury during the transit. It will look like a small, perfectly round and completely opaque black dot against the bright solar photosphere. Mercury is distinguishable in this sense from sunspots, which are irregular in shape, can be partially transparent, and of much larger sizes. This image compares Mercury during a transit (bottom-center) with a sunspot near the solar limb (upper right).
NOTE: DO NOT LOOK AT THE SUN THROUGH A TELESCOPE WITHOUT A FULL-APERTURE SOLAR FILTER! Doing so can cause permanent blindness! Instead, try projecting the image of the sun from a telescope or binoculars onto white paper. This method avoids bringing dangerous, strongly-focused sunlight anywhere near one’s eyes.
Better still: Watch the transit live online! Find live streaming coverage from Slooh, NASA TV, Celestron telescopes, Sky and Telescope magazine, and the Virtual Telescope.
(Top image credit: Sky & Telescope magazine; map and transit image: Fred Espenak)
NASA Langley researchers and engineers are:
Playing key roles in the development of both the Space Launch System and the Orion crew capsule, which will carry astronauts beyond the moon to an asteroid, and eventually to the dusty surface of the Red Planet.
Leading the aerodynamic design of the Space Launch System by doing analysis and extensive testing in facilities such as the Unitary Plan Wind Tunnel and Transonic Dynamics Tunnel.
Performing water impact testing and doing critical aerosciences and structural analyses for the Orion crew capsule. We also assist in analyzing and practicing recovery operations for Orion.
Developing Orion's Launch Abort System, or LAS, which is designed to protect astronauts in the unlikely event a problem arises during launch.
Spearheading work on advanced entry, descent, and landing (EDL) systems for planetary robotic missions and eventual human-scale missions to the surface of Mars. Understanding the aerodynamics and heating of atmospheric entry will enable more precise landing missions, while testing of new technologies will enable much larger missions to reach the Martian surface.
Developing safe and reliable autonomous systems to supplement human operations, including mechanisms that can work in deep space to maneuver, assemble and service structures. In the 2020s, NASA plans to use this kind of technology to retrieve an asteroid.
Leading the development of materials and structures for lightweight and affordable space transportation and habitation systems.
Solving the problems of deep space radiation protection, including leadership of the Human Research Program to develop a better understanding of space radiation on crew health and safety. Langley is also building prototype designs for habitats and storm shelters for use in space.
Working on sensor systems, known as Autonomous Landing Hazard Avoidance Technology (ALHAT), that will equip future planetary landers with the ability to assess landing hazards and land safely and precisely on many different planetary surfaces, including the moon, Mars and other planetary bodies.
Developing the Hypersonic Inflatable Aerodynamic Decelerator, or HIAD, a device that could some day help cargo, or even people, land on another planet. HIAD could give NASA more options for future planetary missions, because it could allow spacecraft to carry larger, heavier scientific instruments and other tools for exploration.
For the first time, Kepler measured the “shock breakout” of a star, the early flash from the shockwave of a dying red supergiant. The flash comes from a type II supernova, KSN 2011d. Read more
When Jasmine Byrd started her job at NASA about two years ago, she knew nothing about Katherine Johnson, the mathematician and “human computer” whose achievements helped inspire the book and movie “Hidden Figures.”
Jasmine Byrd, who works as a project coordinator at NASA's Langley Research Center, looks at an image of Katherine G. Johnson in the lobby of the building named in Johnson's honor. "I was just enthralled with her story," Byrd said.
Credits: NASA/David C. Bowman
At that point, the release of the film was still months away. But excitement was building — particularly at Byrd’s new workplace. She’d arrived at NASA’s Langley Research Center in Hampton, Virginia, where Johnson spent her entire, 33-year NACA and NASA career.
Soon, Byrd felt a strong connection to a woman she’d never met, nearly 70 years her senior.
“I was just enthralled with her story,” said Byrd, a project coordinator for NASA’s Convergent Aeronautics Solutions Project. Today, she works inside Langley’s Building 1244, the same hangar-side location where Johnson crunched numbers for the Flight Research Division in the 1950s.
View images of Katherine G. Johnson through the years at this photo gallery: https://go.nasa.gov/2MskBOq
Credits: NASA via Flickr
“I am thankful for the bridge that Katherine built for someone like myself to easily walk across,” Byrd said. “It helps me to not take this opportunity for granted. I know there were people before me who put in a lot of work and went through a lot of turmoil at times to make sure it was easier for people like myself.”
As Katherine G. Johnson’s 100th birthday — Aug. 26 — approached, many Langley employees expressed admiration for the woman whose math powered some of America’s first triumphs in human space exploration.
Johnson did trajectory analysis for Alan Shepard’s May 1961 mission Freedom 7, America’s first human spaceflight. At a time when digital computers were relatively new and untested, she famously checked the computer’s math for John Glenn’s historic first orbital spaceflight by an American in February of 1962.
Those are just two bullet points in a brilliant career that stretched from 1953 to 1986.
Her 100th birthday was recognized throughout NASA and around the world. But at Langley, the milestone created an extra measure of pride and joy.
Graduate research assistant Cecilia Stoner, stopped on her way to Langley’s cafeteria, said she admires how Johnson remained humble — even when showered with accolades ranging from the Presidential Medal of Freedom to toys made in her likeness.
Stoner’s lunch companion, Erin Krist, chimed in. “It’s incredible what she managed to do,” said Krist, a summer intern. “She paved the way for women. We couldn’t work here today if that hadn’t happened.”
Langley’s acting chief technologist, Julie Williams-Byrd, echoed that thought.
Julie Williams-Byrd, acting chief technologist at NASA's Langley Research Center, said she admires Katherine Johnson's technical excellence and support of STEM education.
Credits: NASA/David C. Bowman
“She opened the doors for the rest of us,” Williams-Byrd said. “Between her and Dorothy Vaughan and Mary Jackson and all the women who were at Langley at the time. It didn’t matter if they were called computers in skirts. They were here to do a job.
“It’s typical NASA culture, right?” Williams-Byrd said. “We have a mission. Everybody’s going to jump in and do what they can to make that mission successful.”
She also admires Johnson’s devotion to promoting science, technology, engineering and math studies among young people.
“While she was very focused on the technical work and really did great things there, her balance of life and responsibilities to those who would come up behind her, that really resonates with me,” Williams-Byrd said.
Remarkably, a handful of current Langley employees worked side by side with Johnson. Among them is research mathematician Daniel Giesy, who started at the center in 1977.
“On my first job here, I was teamed with Katherine Johnson,” Giesy said. “She mentored me.”
Johnson showed Giesy the ropes as he and Johnson both provided mathematical and computer programming support for researchers working to find new tools for designing aircraft control systems. They eventually coauthored papers including “Application of Multiobjective Optimization in Aircraft Control Systems Design” from 1979, written with Dan Tabak.
“I would describe her as a good colleague, competent, courteous,” Giesy said. “She had her moments. If you slopped coffee on the way back from the break room, you bloody well better clean up after yourself. You don’t leave it for the janitor staff to work on.
“But she was focused on getting the job done,” Giesy said. “At that point in time, she wasn’t resting on laurels.” Only later would Giesy learn of her historic contributions to early space missions. “She did not brag on herself particularly.”
Regina Johns, who today recruits participants for tests related to crew systems, aviation operations and acoustics, arrived at Langley in 1968 as a high school intern. She returned as a contract employee in 1973 and has worked at Langley ever since.
This 1985 photo shows Katherine G. Johnson — front row, blue dress — posing with the Langley team she worked with at the time. Her coworker Dan Giesy is the bearded man two rows behind her on the far right.
Credits: NASA
In those early days, she remembers running into Johnson on campus occasionally. Johnson would often stop and talk, asking about her plans and what she was working on. Johns would eventually get to know Mary Jackson, another Langley researcher central to the “Hidden Figures” story.
“There weren’t a lot of minorities here at that time,” Johns said. “To know that they were engineers and mathematicians, it just gave me hope that, if they can do it, it can be done. If you work hard, you can do it.”
She, like many across the agency, said she’d like to send Johnson a birthday message.
“If I had a chance, I would say, thank you for setting the pathway for young people. Thank you for showing us that we can do anything.”
In terms of lives touched, Johnson’s work with youth stands alongside her impact as a world-class mathematician. Langley’s Katherine G. Johnson Computational Research Facility, which opened in September 2017, offers a physical reminder of her contributions.
“The Katherine Johnson building is near where I work, so I think about her often,” said Kimberly Bloom, director of Langley’s Child Development Center. Johnson’s life and accomplishments would have deserved attention even if Hollywood hadn’t come calling, she suggests.
Kimberly Bloom, director of Langley's Child Development Center, said Katherine Johnson made a positive impact on NASA culture and on America as a whole.
Credits: NASA/Sam McDonald
“It’s an important story — how she empowered women of all races,” Bloom said. “And she encouraged kids to learn. She influenced culture here at NASA, but also beyond and made an impact. She certainly is a role model.
“I’d like to thank her for all she’s done not only for NASA but also for this country,” Bloom said.
Learn more about Katherine G. Johnson's life and contributions to NASA at this link.
Sam McDonald NASA Langley Research Center
Vibration test at 80% power of the European Structural Test Article conducted at NASA Glenn’s Space Power Facility at Plum Brook Station, Sandusky, Ohio.
The Vehicle Assembly Building (VAB) is one of the largest buildings in the world (525 ft 10 in tall, 716 ft long, and 518 ft wide) . It was originally built for assembly of Apollo/Saturn vehicles and was later modified to support Space Shuttle operations and now, Space Launch System rocket and Orion spacecraft for Exploration Mission 1.
In this view looking up from the floor of the VAB at NASA’s Kennedy Space Center in Florida, four levels of new work platforms are now installed on the north and south sides of High Bay 3. The G-level work platforms were most recently installed, at about the 14th floor level. Below them are the H, J and K level platforms.
The G-level work platforms are the fourth of 10 levels of work platforms that will surround and provide access to SLS. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s journey to Mars.
Voyager 2 Photograph of Jupiter
A photo of Jupiter. Took by Voyager with VGISS on July 02, 1979 at 06:01:35. Detail page on OPUS database.
Posing in the wind tunnel. Via NASA Langley.
As Tropical Storm Hermine charged up the East Coast Sept. 2, 2016, Langley Air Force Base reached out to the Research Services Directorate and NASA Langley Research Center hangar manager Dale Bowser to see if NASA Langley could store a few F-22 Raptors. Even though the hangar in Hampton, Virginia, already had a large visitor — a C-130 from the Wallops Flight Facility on Virginia’s Eastern Shore — the hangar was able to carefully sandwich in more than a dozen Air Force fighters and offer them protection from the wind. NASA Langley photographer David C. Bowman captured the image using a fish-eye lens and shooting down from the hangar's catwalk some 70 feet above the building's floor.
The hangar provides 85,200 square feet (7,915 square meters) of open space and large door dimensions that allow for entry of big aircraft such as Boeing 757s and other commercial or military transport-class planes. The hangar normally is home to 13 of NASA Langley's own research aircraft, when they are not out doing atmospheric science or aeronautics research. Still, there is enough space to share with neighboring Langley Air Force Base during emergencies. The facility is rated for at least a Category 2 hurricane. Built in the early 1950s, it was designed to fit a B-36. It can also accommodate the Super Guppy, which visited NASA Langley in 2014.
Image credit: NASA/David C. Bowman