Just Me Meeting My Hero Katherine Johnson After Interviewing Her In The Newsroom For Another Article

Just Me Meeting My Hero Katherine Johnson After Interviewing Her In The Newsroom For Another Article

Just me meeting my hero Katherine Johnson after interviewing her in the newsroom for another article I’m writing. nbd ((VERY BIG DEAL)) •🚀•🚀• Katherine G. Johnson is a pioneer in American space history. A NASA mathematician, Johnson’s computations have influenced every major space program from Mercury through the Shuttle. She even calculated the flight path for the first American mission space. In 1953, Johnson was contracted as a research mathematician at the Langley Research Center with the National Advisory Committee for Aeronautics (NACA), the agency that preceded NASA. She worked in a pool of women performing math calculations until she was temporarily assigned to help the all-male flight research team, and wound up staying there. Johnson’s specialty was calculating the trajectories for space shots which determined the timing for launches, including the Mercury mission and Apollo 11, the mission to the moon. (at NASA Langley Research Center)

More Posts from Nasalangley and Others

9 years ago
Neil Armstrong At The Lunar Landing Research Facility At NASA’s Langley Research Center In Hampton,

Neil Armstrong at the Lunar Landing Research Facility at NASA’s Langley Research Center in Hampton, VA

February 12, 1969 (5 months, 4 days before the launch of the Apollo 11 Spacecraft)

@nasa @nasahistory


Tags
8 years ago

Langley Research Center Centennial Event

Langley Research Center Centennial Event

NASA Administrator Charles Bolden, right, and Langley Research Center Director, Dr. David E. Bowles, left, poses for a photo with staff dressed in space suits on Langley Research Center's Centennial float on Thursday, Dec. 1, 2016, at Langley Research Center in Hampton, VA.

Photo Credit: NASA Langley Research Center


Tags
9 years ago

It’s incredible what humans can do on and off of our planet. Here is a view from the International Space Station taken by Engineer and NASA Astronaut, Colonel Tim Kopra.

Doha, Bahrain – Manmade EarthArt.

Doha, Bahrain – manmade EarthArt.

February 7, 2016.

Credit: NASA Astronaut Tim Kopra’s Twitter Account


Tags
8 years ago

Video: Orion Swing Drop at NASA Langley Research Center

A test version of the Orion spacecraft is pulled back like a pendulum and released, taking a dive into the 20-foot-deep Hydro Impact Basin at NASA’s Langley Research Center in Hampton, Virginia. Crash-test dummies wearing modified Advanced Crew Escape Suits are securely seated inside the capsule to help engineers understand how splashdown in the ocean during return from a deep-space mission could impact the crew and seats. Each test in the water-impact series simulates different scenarios for Orion’s parachute-assisted landings, wind conditions, velocities and wave heights the spacecraft and crew may experience when landing in the ocean upon return missions in support of the journey to Mars. 


Tags
4 years ago

Tiny NASA Cameras to Watch Commercial Lander form Craters on Moon

Footage from vibration and thermal vacuum testing of the SCALPSS cameras and data storage unit.

Credits: NASA/Gary Banziger

This little black camera looks like something out of a spy movie — the kind of device one might use to snap discrete photos of confidential documents.

It's about half the size of a computer mouse.

image

The SCALPSS cameras, one of which is pictured here prior to thermal vacuum testing, are about the size of a computer mouse. Credits: NASA

But the only spying this camera — four of them, actually — will do is for NASA researchers wondering what happens under a spacecraft as it lands on the Moon.

It's a tiny technology with a big name — Stereo Camera for Lunar Plume-Surface Studies, or SCALPSS for short — and it will journey to the Moon in 2021 as a payload aboard an Intuitive Machines Nova-C lunar lander spacecraft. Intuitive Machines is one of two U.S. companies delivering technology and science experiments to the lunar surface later this year as part of NASA's Commercial Lunar Payload Services (CLPS) initiative. SCALPSS will provide important data about the crater formed by the rocket plume of the lander as it makes its final descent and landing on the Moon's surface.

As part of the Artemis program, NASA will send robots and humans to study more of the Moon than ever before. The agency plans to establish sustainable lunar exploration by the end of the decade, and has outlined its Artemis Base Camp concept for the lunar South Pole. Landers may deliver multiple payloads very near one another. Data such as that from SCALPSS will prove aid in computer models that inform subsequent landings.

image

SCALPSS team members prepare the cameras and data storage unit for vibration testing. Credits: NASA/David C. Bowman

"As we send bigger, heavier payloads and we try to land things in close proximity to each other, first at the Moon then at Mars, this ability to predict landing impacts is very important," said Michelle Munk, principal investigator for SCALPSS at NASA's Langley Research Center in Hampton, Virginia.

The four SCALPSS cameras, which will be placed around the base of the commercial lander, will begin monitoring crater formation from the precise moment a lander's hot engine plume begins to interact with the Moon's surface.

"If you don't see the crater when it starts to form, you can't really model it," said Munk. "You've got to have the start point and the end point and then you can figure out what happened, in between."

The cameras will continue capturing images until after the landing is complete. Those final stereo images, which will be stored on a small onboard data storage unit before being sent to the lander for downlink back to Earth, will allow researchers to reconstruct the crater's ultimate shape and volume.

image

The SCALPSS data storage unit will store the imagery the cameras collect as the Intuitive Machines Nova-C lunar lander spacecraft makes its final descent and lands on the Moon's surface. Credits: NASA

Testing to characterize the SCALPSS camera and lens took place last year at NASA's Marshall Space Flight Center in Huntsville, Alabama. Researchers conducted radial distortion, field-of-view and depth-of-focus tests among others. They also ran analytical models to better characterize how the cameras will perform. Development of the actual SCALPSS payload took place at Langley. And over the summer, researchers were able to enter the lab to assemble the payload and conduct thermal vacuum and vibration tests.

That lab access involves special approval from officials at Langley, which is currently only giving access to essential employees and high-priority projects to keep employees safe during the ongoing COVID-19 pandemic. SCALPSS was one of the first projects to return to the center. Before they could do that, facilities had to pass safety and hazard assessments. And while on center, the team had to follow strict COVID-19 safety measures, such as wearing masks and limiting the number of people who could be in a room at one time. The center also provided ample access to personal protective equipment and hand sanitizer.

The SCALPSS hardware was completed in late October and will be delivered to Intuitive Machines in February.

"Development and testing for the project moved at a pretty brisk pace with very limited funds," said Robert Maddock, SCALPSS project manager. "This was likely one of the most challenging projects anyone on the team has ever worked on."

But Munk, Maddock and the entire project team have embraced these challenges because they know the images these little cameras collect may have big ripple effects as NASA prepares for a human return to the Moon as part of the Artemis program.

"To be able to get flight data and update models and influence other designs — it's really motivating and rewarding," said Munk.

Hot off the heels of this project, the SCALPSS team has already begun development of a second payload called SCALPSS 1.1. It will be flown by another CLPS commercial lander provider to a non-polar region of the Moon in 2023 and collect data similar to its predecessor. It will also carry two additional cameras to get higher resolution stereo images of the landing area before engine plume interactions begin, which is critical for the analytic models in establishing the initial conditions for the interactions.

NASA’s Artemis program includes sending a suite of new science instruments and technology demonstrations to study the Moon, landing the first woman and next man on the lunar surface in 2024, and establishing a sustained presence by the end of the decade. The agency will leverage its Artemis experience and technologies to prepare for humanity’s the next giant leap – sending astronauts to Mars as early as the 2030s.

Joe Atkinson NASA Langley Research Center


Tags
8 years ago

Power of Pink Provides NASA with Pressure Pictures

Power Of Pink Provides NASA With Pressure Pictures

They say you show your true colors when you’re under pressure.

Turns out the old saying works for models being tested in wind tunnels as well, specifically those coated with a unique Pressure-Sensitive Paint (PSP) that NASA engineers have used for more than 25 years.

Read more: https://www.nasa.gov/aero/power-of-pink-provides-nasa-with-pressure-pictures


Tags
7 years ago

The Hunt for New Worlds Continues with TESS

We’re getting ready to start our next mission to find new worlds! The Transiting Exoplanet Survey Satellite (TESS) will find thousands of planets beyond our solar system for us to study in more detail. It’s preparing to launch from our Kennedy Space Center at Cape Canaveral in Florida.

image

Once it launches, TESS will look for new planets that orbit bright stars relatively close to Earth. We’re expecting to find giant planets, like Jupiter, but we’re also predicting we’ll find Earth-sized planets. Most of those planets will be within 300 light-years of Earth, which will make follow-up studies easier for other observatories.

image

TESS will find these new exoplanets by looking for their transits. A transit is a temporary dip in a star’s brightness that happens with predictable timing when a planet crosses between us and the star. The information we get from transits can tell us about the size of the planet relative to the size of its star. We’ve found nearly 3,000 planets using the transit method, many with our Kepler space telescope. That’s over 75% of all the exoplanets we’ve found so far!

image

TESS will look at nearly the entire sky (about 85%) over two years. The mission divides the sky into 26 sectors. TESS will look at 13 of them in the southern sky during its first year before scanning the northern sky the year after.

image

What makes TESS different from the other planet-hunting missions that have come before it? The Kepler mission (yellow) looked continually at one small patch of sky, spotting dim stars and their planets that are between 300 and 3,000 light-years away. TESS (blue) will look at almost the whole sky in sections, finding bright stars and their planets that are between 30 and 300 light-years away.

image

TESS will also have a brand new kind of orbit (visualized below). Once it reaches its final trajectory, TESS will finish one pass around Earth every 13.7 days (blue), which is half the time it takes for the Moon (gray) to orbit. This position maximizes the amount of time TESS can stare at each sector, and the satellite will transmit its data back to us each time its orbit takes it closest to Earth (orange).

image

Kepler’s goal was to figure out how common Earth-size planets might be. TESS’s mission is to find exoplanets around bright, nearby stars so future missions, like our James Webb Space Telescope, and ground-based observatories can learn what they’re made of and potentially even study their atmospheres. TESS will provide a catalog of thousands of new subjects for us to learn about and explore.

image

The TESS mission is led by MIT and came together with the help of many different partners. Learn more about TESS and how it will further our knowledge of exoplanets, or check out some more awesome images and videos of the spacecraft. And stay tuned for more exciting TESS news as the spacecraft launches!

Watch the Launch + More!

image

Sunday, April 15 11 a.m. EDT - NASA Social Mission Overview

Join mission experts to learn more about TESS, how it will search for worlds beyond our solar system and what scientists hope to find! Have questions? Use #askNASA to have them answered live during the broadcast.

Watch HERE. 

1 p.m. EDT - Prelaunch News Conference

Get an update on the spacecraft, the rocket and the liftoff operations ahead of the April 16 launch! Have questions? Use #askNASA to have them answered live during the broadcast.

Watch HERE.

3 p.m. EDT - Science News Conference

Hear from mission scientists and experts about the science behind the TESS mission. Have questions? Use #askNASA to have them answered live during the broadcast. 

Watch HERE.

4 p.m. EDT - TESS Facebook Live

This live show will dive into the science behind the TESS spacecraft, explain how we search for planets outside our solar system and will allow you to ask your questions to members of the TESS team. 

Watch HERE. 

Monday, April 16 10 a.m. EDT - NASA EDGE: TESS Facebook Live

This half-hour live show will discuss the TESS spacecraft, the science of searching for planets outside our solar system, and the launch from Cape Canaveral.

Watch HERE.

1 p.m. EDT - Reddit AMA

Join us live on Reddit for a Science AMA to discuss the hunt for exoplanets and the upcoming launch of TESS!

Join in HERE.

6 p.m. EDT - Launch Coverage!

TESS is slated to launch at 6:32 p.m. EDT on a SpaceX Falcon 9 rocket from our Kennedy Space Center in Florida.

Watch HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

7 years ago

Two Virginia Schools Make Final Cut in Space Station Contest

Two Hampton Roads high schools will soon have their creations judged by NASA to see if they make it aboard the International Space Station. One is a food recipe for astronauts. The other is hardware for the space station.

Two Virginia Schools Make Final Cut In Space Station Contest

Students from Phoebus High School prepare their breakfast dish at HUNCH's Preliminary Culinary Challenge at NASA's Langley Research Center.

Credits: NASA/David C. Bowman

Both projects are part of a NASA program called HUNCH, or High school students United with NASA to Create Hardware.

NASA’s Langley Research Center in Hampton, Virginia, hosted a preliminary culinary challenge March 5, where two schools cooked up a breakfast entrée. The shrimp and grits with gouda cheese dish from Phoebus High School in Hampton made it to the final competition at NASA’s Johnson Space Center in Houston scheduled for April 26.

Their work will be judged by Johnson Food Lab personnel, industry professionals, the space station program office, and astronauts for quality and taste. They’ll also be rated on a research paper and presentation video. The winning entree will be created by the Johnson Space Food Lab and sent up to the space station for astronauts to enjoy.

Space Hardware

Two Virginia Schools Make Final Cut In Space Station Contest

Poquoson High School student Travis Redman, left, talks with Glenn Johnson, a design engineer at NASA's Johnson Space Center, about an astronaut boot that would lock in place preventing floating in a no gravity environment.

Credits: NASA/George Homich

Langley also hosted a critical design review March 6, when four schools showed off the real-world products they fabricated to tackle challenges faced by astronauts living in space. The team from Poquoson High School in Poquoson, Virginia, was selected as a finalist and faces a final design and prototyping review April 25 at Johnson.

The hardware includes a pin kit, can squisher, exercise harness, crew reminder tool, location app tool, and hygiene caddy. Many of the hardware projects are items personally requested by space station crew.

The North Carolina School of Science and Mathematics, who also presented their projects at Langley, will join Poquoson High to present their works at Johnson. The projects the team from the Durham-based school had were an augmented reality object identification annotation tool, automatic location stowage system, and a single point exercise harness.

“The HUNCH Program can change the trajectory of a student’s life, by providing various avenues beyond the STEM (science, technology, engineering and math) field and opportunities to participate in the global effort to research in space,” said Yolanda Watford Simmons, manager of Langley’s HUNCH program.

In 2015, a culinary team from Phoebus High won the culinary challenge and their entrée, Jamaican rice and beans with coconut milk, is now included in an astronaut cookbook. Read more on their success here.

For more information on HUNCH, go here.

Eric Gillard NASA Langley Research Center


Tags
9 years ago

Science At NASA

ScienceCasts: Horn-rims and Funny Stockings on the Space Station

About three quarters of ISS astronauts experience changes in the structure and function of their eyes.  An experiment on the space station called the “Fluid Shifts Study” is investigating these vision problems in space.

Visit http://science.nasa.gov/ for more.

http://www.nasa.gov/station

7 years ago

New NASA X-Plane Construction Begins Now

New NASA X-Plane Construction Begins Now

NASA’s aeronautical innovators are ready to take things supersonic, but with a quiet twist.

For the first time in decades, NASA aeronautics is moving forward with the construction of a piloted X-plane, designed from scratch to fly faster than sound with the latest in quiet supersonic technologies.

The new X-plane’s mission: provide crucial data that could enable commercial supersonic passenger air travel over land.

New NASA X-Plane Construction Begins Now

To that end, NASA on April 2 awarded a $247.5 million contract to Lockheed Martin Aeronautics Company of Palmdale, Calif., to build the X-plane and deliver it to the agency’s Armstrong Flight Research Center in California by the end of 2021.

“It is super exciting to be back designing and flying X-planes at this scale,” said Jaiwon Shin, NASA’s associate administrator for aeronautics. “Our long tradition of solving the technical barriers of supersonic flight to benefit everyone continues.”

The key to success for this mission – known as the Low-Boom Flight Demonstrator – will be to demonstrate the ability to fly supersonic, yet generate sonic booms so quiet, people on the ground will hardly notice them, if they hear them at all.

Current regulations, which are based on aircraft speed, ban supersonic flight over land. With the low-boom flights, NASA intends to gather data on how effective the quiet supersonic technology is in terms of public acceptance by flying over a handful of U.S. cities, which have yet to be selected.

The complete set of community response data is targeted for delivery in 2025 to the Federal Aviation Administration (FAA) and the International Civil Aviation Organization (ICAO) from which they can develop and adopt new rules based on perceived sound levels to allow commercial supersonic flight over land.

Years of sonic boom research, beginning with the X-1 first breaking the sound barrier in 1947 – when NASA was the National Advisory Committee for Aeronautics – paved the way for the Low-Boom Flight Demonstration X-plane’s nearly silent treatment of supersonic flight.

New NASA X-Plane Construction Begins Now

The answer to how the X-plane's design makes a quiet sonic boom is in the way its uniquely-shaped hull generates supersonic shockwaves. Shockwaves from a conventional aircraft design coalesce as they expand away from the airplane’s nose and tail, resulting in two distinct and thunderous sonic booms.

But the design’s shape sends those shockwaves away from the aircraft in a way that prevents them from coming together in two loud booms. Instead, the much weaker shockwaves reach the ground still separated, which will be heard as a quick series of soft thumps – again, if anyone standing outside notices them at all.

It’s an idea first theorized during the 1960s and tested by NASA and others during the years since, including flying from 2003-2004 an F-5E Tiger fighter jetmodified with a uniquely-shaped nose, which proved the boom-reducing theory was sound.

NASA’s confidence in the Low-Boom Flight Demonstration design is buoyed by its more recent research using results from the latest in wind-tunnel testing, and advanced computer simulation tools, and actual flight testing.

Recent studies have investigated methods to improve the aerodynamic efficiency of supersonic aircraft wings, and sought to better understand sonic boom propagation through the atmosphere.

Even a 150-year-old photographic technique has helped unlock the modern mysteries of supersonic shockwave behavior during the past few years.

“We’ve reached this important milestone only because of the work NASA has led with its many partners from other government agencies, the aerospace industry and forward-thinking academic institutions everywhere,” said Peter Coen, NASA’s Commercial Supersonic Technology project manager.

So now it’s time to cut metal and begin construction.

The X-plane’s configuration will be based on a preliminary design developed by Lockheed Martin under a contract awarded in 2016. The proposed aircraft will be 94 feet long with a wingspan of 29.5 feet and have a fully-fueled takeoff weight of 32,300 pounds.

The design research speed of the X-plane at a cruising altitude of 55,000 feet is Mach 1.42, or 940 mph. Its top speed will be Mach 1.5, or 990 mph. The jet will be propelled by a single General Electric F414 engine, the powerplant used by F/A-18E/F fighters.

A single pilot will be in the cockpit, which will be based on the design of the rear cockpit seat of the T-38 training jet famously used for years by NASA’s astronauts to stay proficient in high-performance aircraft.

New NASA X-Plane Construction Begins Now

Jim Less is one of the two primary NASA pilots at Armstrong who will fly the X-plane after Lockheed Martin’s pilots have completed initial test flights to make sure the design is safe to fly.

“A supersonic manned X-plane!” Less said, already eager to get his hands on the controls. “This is probably going to be a once-in-a-lifetime opportunity for me. We’re all pretty excited.”

Less is the deputy chief pilot for Low-Boom Flight Demonstration. He and his boss, chief pilot Nils Larson, have already provided some input into things like cockpit design and the development of the simulators they will use for flight training while the aircraft is under construction.

“It’s pretty rare in a test pilot’s career that he can be involved in everything from the design phase to the flight phase, and really the whole life of the program,” Less said.

The program is divided into three phases and the tentative schedule looks like this:

2019 – NASA conducts a critical design review of the low-boom X-plane configuration, which, if successful, allows final construction and assembly to be completed.

2021 – Construction of the aircraft at Lockheed Martin’s Skunk Works facility in Palmdale is completed, to be followed by a series of test flights to demonstrate the aircraft is safe to fly and meets all of NASA’s performance requirements. The aircraft is then officially delivered to NASA, completing Phase One.

2022 – Phase Two will see NASA fly the X-plane in the supersonic test range over Edwards to prove the quiet supersonic technology works as designed, its performance is robust, and it is safe for operations in the National Airspace System.

2023 to 2025 – Phase Three begins with the first community response test flights, which will be staged from Armstrong. Further community response activity will take place in four to six cities around the U.S.

All of NASA’s aeronautics research centers play a part in the Low-Boom Flight Demonstration mission, which includes construction of the demonstrator and the community overflight campaign. For the low-boom flight demonstrator itself, these are their roles:

Ames Research Center, California — configuration assessment and systems engineering.

Armstrong Flight Research Center, California — airworthiness, systems engineering, safety and mission assurance, flight/ground operations, flight systems, project management, and community response testing.

Glenn Research Center, Cleveland — configuration assessment and propulsion performance.

Langley Research Center, Virginia — systems engineering, configuration assessment and research data, flight systems, project management, and community response testing.

“There are so many people at NASA who have put in their very best efforts to get us to this point,” said Shin. “Thanks to their work so far and the work to come, we will be able to use this X-plane to generate the scientifically collected community response data critical to changing the current rules to transforming aviation!”

Jim Banke Aeronautics Research Mission Directorate


Tags
  • netizen-argle-bargle
    netizen-argle-bargle liked this · 5 years ago
  • she-is-little-and-fierce
    she-is-little-and-fierce reblogged this · 5 years ago
  • she-is-little-and-fierce
    she-is-little-and-fierce liked this · 5 years ago
  • reccanyz
    reccanyz liked this · 5 years ago
  • master7mindd
    master7mindd reblogged this · 8 years ago
  • toastedcoconut9696
    toastedcoconut9696 liked this · 8 years ago
  • deeplylearning
    deeplylearning liked this · 8 years ago
  • forgetmi
    forgetmi liked this · 8 years ago
  • laurathelaureate
    laurathelaureate reblogged this · 8 years ago
  • chemengblr
    chemengblr reblogged this · 8 years ago
  • blueascension
    blueascension liked this · 8 years ago
  • hxcscut
    hxcscut reblogged this · 8 years ago
  • queersiren-dc
    queersiren-dc reblogged this · 8 years ago
  • queersiren-dc
    queersiren-dc liked this · 8 years ago
  • bite-o-chemistry-blog
    bite-o-chemistry-blog reblogged this · 8 years ago
  • madtechnomage
    madtechnomage reblogged this · 9 years ago
  • notoneredcent
    notoneredcent liked this · 9 years ago
  • lexgurst
    lexgurst liked this · 9 years ago
  • rubylevanah
    rubylevanah liked this · 9 years ago
  • selfrescuingprincesssociety
    selfrescuingprincesssociety reblogged this · 9 years ago
  • self-indulgentfan
    self-indulgentfan liked this · 9 years ago
  • itchbay-srps
    itchbay-srps liked this · 9 years ago
  • thisfutureastronaut
    thisfutureastronaut reblogged this · 9 years ago
  • thisfutureastronaut
    thisfutureastronaut liked this · 9 years ago
  • starhasarrived
    starhasarrived reblogged this · 9 years ago
  • nasalangley
    nasalangley reblogged this · 9 years ago
  • nasalangley
    nasalangley liked this · 9 years ago
  • kodama-pixi
    kodama-pixi reblogged this · 9 years ago
  • bite-o-chemistry-blog
    bite-o-chemistry-blog reblogged this · 9 years ago
nasalangley - NASA Langley Research Center
NASA Langley Research Center

Hampton, VA

94 posts

Explore Tumblr Blog
Search Through Tumblr Tags