Today — June 20, 2024 — is the northern summer solstice. In the Northern Hemisphere, it marks the longest day of the year and the official start to summer.
We experience changing day lengths throughout the year because Earth rotates on a tilted axis as it goes around the Sun. This means during half of the year the North Pole tilts toward the Sun and in the other half it points away.
Solstices occur twice per year, when Earth’s poles are tilted closest to and farthest from the Sun.
The summer solstice is an important day for cultures around the world, especially at latitudes near the North Pole. Indigenous peoples have long marked the summer solstice with dancing and celebrations. Farmers have relied on the solstice to determine when to plant crops. The solstice’s timing also influenced the development of some calendars, like the ancient Roman calendar and the modern Gregorian calendar.
To mark the beginning of summer, here are four ways you can enjoy the Sun and the many wonders of space this season:
June is the month of the Strawberry Moon. This name originates with the Algonquin tribes. June is when strawberries are ready for harvest in the northeastern United States, where the Algonquin people traditionally live. The full Strawberry Moon this year happens tomorrow night — June 21, 2024. Grab a pair of binoculars to see it in detail.
During the Heliophysics Big Year, we are challenging you to participate in as many Sun-related activities as you can. This month’s theme is performance art. We’re looking at how various kinds of performance artists are moved by the Sun and its influence on Earth. For example, check out this Sun song!
Find out how to get involved here: https://science.nasa.gov/sun/helio-big-year/.
NASA has a ton of great space podcasts. Take a listen to Curious Universe’s Here Comes the Sun series to learn all about our closest star, from how it causes weather in space, to how you can help study it! For even more podcasts, visit our full list here: https://www.nasa.gov/podcasts.
The Sun sometimes has dark patches called sunspots. You can make your own sunspots with our favorite cookie recipe. Real sunspots aren’t made of chocolate, but on these sunspot cookies they are. And they're delicious.
Make sure to follow us on Tumblr for your regular dose of space!
Spiral and elliptical galaxies seem neatly put together, but what happened to irregular galaxies? Irregular galaxies have one-of-a-kind shapes and many look like blobs! Why do they look the way they do? Astronomers think the uniqueness of these galaxies results from their interactions with other galaxies — like when they pass close to one another or even collide!
Looking back at the early universe with the help of our Hubble Space Telescope’s “deep field” observations, astronomers can peek at galaxies millions and billions of light-years away. They noticed that these far-away galaxies appear unusually messy, showing more star formation and mergers than galaxies closer to the Milky Way.
We also see irregular galaxies closer to home, though. Some may form when two galaxies pass close together in a near-miss. When this happens, their gravity pulls stars out of place in both galaxies, messing up the neat structure they originally had as spiral or elliptical galaxies. Think of it like this: you happen to have a pile of papers sitting at the edge of a table and when someone passes close by the papers become ruffled and may scatter everywhere! Even though the two galaxies never touched, gravity's effects leave them looking smeared or distorted.
Some irregular galaxies result from the collision between two galaxies. And while some of these look like a blob of stars and dust, others form dazzling ring galaxies! Scientists think these may be a product of collisions between small and large galaxies. These collisions cause ripples that disturb both galaxies, throwing dust, gas, and stars outward. When this happens, it pushes out a ring of material, causing gas clouds to collide and spark the birth of new stars. After just a few million years, stars larger than our Sun explode as supernovae, leaving neutron stars and black holes throughout the ring!
Not all galaxy collisions create irregular galaxies — our Milky Way spiral galaxy has gone through many mergers but has stayed intact! And for some interacting galaxies, being an irregular galaxy may just be a phase in their transformation. We’re observing them at a snapshot in time where things are messy, but they may eventually become neat and structured spirals and ellipticals.
Irregular galaxies are similar to each other, but unique and beautiful because of their different interactions, whether they’re just passing another galaxy or taking part in a dramatic collision. Keep up with NASA Universe on Facebook and Twitter where we post regularly about galaxies.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
In October 2018, we're launching the Ionospheric Connection Explorer, or ICON, to study Earth's dynamic interface to space.
The region of Earth's atmosphere on the edge of space plays a crucial role in our technology and exploration. This is where many of our satellites — including the International Space Station — orbit, and changing conditions in this region can cause problems for those satellites and disrupt communications signals.
This part of the atmosphere is shaped by a complicated set of factors. From below, regular weather on Earth can propagate upwards and influence this region. From above, electric and magnetic fields and charged particles in space — collectively called space weather — can also trigger changes. ICON's goal is to better understand this region and how it's shaped by these outside influences.
Though the ICON spacecraft zooms around Earth at upwards of 14,000 miles per hour, its wind-measuring instrument, named MIGHTI, can detect changes in wind speed smaller than 10 miles per hour. MIGHTI measures the tiny shifts in color caused by the motion of glowing gases in the upper atmosphere. Then, by making use of the Doppler effect — the same phenomenon that makes an ambulance siren change pitch as it passes you — scientists can figure out the gases' speed and direction.
ICON circles Earth in just over an hour and a half, completing nearly 15 orbits per day. Its orbit is inclined by 27 degrees, so over time, its measurements will completely cover the latitudes scientists are most interested in, near the equator.
ICON doesn't carry any onboard fuel. Instead, its single solar panel — measuring about 100 inches long and 33 inches wide, a little bit bigger than a standard door — produces power for the spacecraft. In science mode, ICON draws about 209-265 Watts of power.
Now getting ready for launch, the ICON team has been hard at work ever since the idea for the mission was selected for further study in 2011.
How much does good science weigh? In ICON's case, about as much as vending machine. The observatory weighs 634 pounds altogether.
Because ICON travels so fast, its Far Ultraviolet instrument takes eight snapshots per second of passing structures. This avoids blurring the images and captures the fine detail scientists need. But available bandwidth only allows FUV to send 5 images per minute, so the instrument uses a de-blurring technique called time-delay integration to combine 12 seconds' worth of data into a single image.
Image credit: Mark Belan
ICON carries four distinct instruments to study Earth's boundary to space.
2 MIGHTIs (Michelson Interferometer for Global High-resolution Thermospheric Imaging): Built by the Naval Research Laboratory in Washington, D.C., to observe the temperature and speed of the neutral atmosphere. There are two identical MIGHTI instruments onboard ICON.
2 IVMs (Ion Velocity Meter): Built by the University of Texas at Dallas to observe the speed of the charged particle motions, in response to the push of the high-altitude winds and the electric fields they generate. ICON carries two, and they are the mission’s only in situ instruments.
EUV (Extreme Ultra-Violet instrument): Built by the University of California, Berkeley to capture images of oxygen glowing in the upper atmosphere, in order to measure the height and density of the daytime ionosphere.
FUV (Far Ultra-Violet instrument): Built by UC Berkeley to capture images of the upper atmosphere in the far ultraviolet light range. At night, FUV measures the density of the ionosphere, tracking how it responds to weather in the lower atmosphere. During the day, FUV measures changes in the chemistry of the upper atmosphere — the source for the charged gases found higher up in space.
ICON orbits about 360 miles above Earth, near the upper reaches of the ionosphere — the region of Earth's atmosphere populated by electrically charged particles. From this vantage point, ICON combines remote measurements looking down along with direct measurements of the material flowing around it to connect changes throughout this region.
NASA's GOLD mission — short for Global-scale Observations of the Limb and Disk — launched aboard a commercial communications satellite on Jan. 25, 2018. From its vantage point in geostationary orbit over Brazil, GOLD gets a full-disk view of the same region of space that ICON studies, helping scientists connect the big picture with the details.
Together, ICON's instruments produce and downlink about 1 gigabit of data per day — about 125 megabytes. This adds up to about 1 gigabyte per week. ICON produces 10 different data products, ranging from measurements of wind speeds and ionospheric density to more complex models, that will help scientists shed new light on this ever-changing region.
ICON’s launch is scheduled for 4 a.m. EDT on Oct. 26, and NASA TV coverage begins at 3:45 a.m. Stay tuned on Twitter and Facebook for the latest on ICON.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
How did your launch abort affect your future space flights?
Dreaming of going to space? – Astronaut Victor Glover has you covered.
In his first video from space, take a look at our home through the window of SpaceX’s Crew Dragon “Resilience” spacecraft. Victor arrived to the International Space Station alongside his fellow Crew-1 astronauts on Nov. 16, 2020.
Follow his Instagram account HERE to stay up-to-date on station life and for more behind-the-scenes content like this.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
It’s time to get crafty with some needle and thread. At NASA, we hope to inspire art of all kinds. To highlight #WorldEmbroideryDay on July 30, we want to know: does our imagery inspire you? Show us your art and we may feature it on social media.
Search for a NASA image that inspires you. Here are a few places to get you started: Hubble, James Webb Space Telescope, Ocean Color, Landsat and Earth Observatory
Create. Over the years, we've seen a growing number of embroidered pieces that showcase our organization's research, especially with needlepoint.
Share your creation, along with the image it was inspired by, on social media using the hashtag #NASAEmbroidery. We will share selected pieces on July 30 for World Embroidery Day
NASA imagery has many functions. From studying distant galaxies to tracking ocean health, our scientists use these images to not only monitor our home planet, but better understand life beyond our solar system.
Embroidery is an ancient craft that has experienced a revival over the years. It involves decorating fabric or other materials using a needle to apply thread or yarn. Have you recently taken up embroidery? What images are you inspired by? We’d love to see it.
NASA Images
Hubble Image Gallery
NASA’s Ocean Color Image Gallery
James Webb Space Telescope
Landsat Image Gallery
Take a picture of your piece and upload it to Twitter, Instagram, Tumblr or Facebook. Make sure you use the hashtag #NASAEmbroidery so we know that you are taking part in the event and make sure that your privacy permissions allow us to view your post.
If the piece catches our eye, we may share your work on NASA’s main social media accounts as well as theme-related ones. We may also feature your art in a NASA Flickr gallery and our Tumblr pages. We’ll contact you directly to grant us permission to feature your work. You can follow @NASA on Twitter, Instagram and Facebook for embroidery creations, which will be featured from July 30-Aug. 1
Make sure to follow us on Tumblr for your regular dose of space!
On Friday, Jan. 6 and Friday, Jan. 13, astronauts on the International Space Station will step outside to perform spacewalks.
What’s a spacewalk? It’s any time an astronaut gets out of a vehicle or spacecraft while in space. It can also be called an EVA (extravehicular activity).
Astronauts go on spacewalks for many reasons. These activities allow crew members to work outside their spacecraft (in this case the space station).
So what specific tasks will astronauts perform in these two upcoming spacewalks? Let’s take a look…
Both spacewalks are being performed to upgrade the orbital outpost’s power system.
The crew members will install adapter plates and hook up electrical connections for six new lithium-ion batteries that were delivered to the station in December.
NASA astronauts Shane Kimbrough and Peggy Whitson will perform the first spacewalk on Jan. 6. The work will continue Jan. 13 during the second spacewalk, which will be conducted by Kimbrough and ESA astronaut Thomas Pesquet.
Prior to each spacewalk, the new batteries will be robotically extracted from a pallet to replace 12 older nickel-hydrogen batteries through a series of robotic operations.
Friday, Jan. 6 Coverage begins at 5:30 a.m. EST, with astronauts venturing outside at 7 a.m. Watch HERE
Friday, Jan. 13 Coverage begins at 5:30 a.m. EST, with astronauts venturing outside at 7 a.m. Watch HERE
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
On this day in 1976, we landed an ambitious mission on Mars –– the Viking 2 mission.
One of a pair of identical spacecraft, Viking found a place in history when it became the first U.S. mission to successfully land on Mars and return images of the surface.
Viking imaged and collected different types of data on the Martian surface. It also conducted experiments specifically designed to look for possible signs of life.
These experiments discovered unexpected chemical activity in the Martian soil but provided no clear evidence for the presence of living microorganisms.
Viking didn’t find unambiguous signs of life on Mars, but it made astrobiologists wonder if we devised the right tests. To this day, the results from Viking are helping to shape the development of life detection strategies at NASA.
So, what’s next in our search for life?
Our Mars 2020 Perseverance rover is the first mission designed to seek possible signs of past Martian life. For astrobiologists, the answers to questions about Mars’ habitability are in Perseverance’s “hands.” The robot astrobiologist and geologist launched earlier this year on July 30 and will touch down on Mars on Feb. 18, 2021.
Discover more about Viking and the history of exploration at Mars with our “Missions To Mars” graphic history novel here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What are you most excited to see on your next flight? Or, what natural phenomena do you enjoy seeing the most? Thank you!
Ever wonder what it’s like to be a NASA astronaut? On Thursday, Oct. 29, NASA Astronaut Peggy Whitson will answer your questions! She’ll explain how it takes the NASA Village to help train for her mission to space, what the challenges of living in space are and what it’s like to be a NASA astronaut.
Fun facts about NASA Astronaut Peggy Whitson:
Astronaut Whitson was selected as an Astronaut Candidate in April 1996, and started training in August of the same year.
After completing two years of training and evaluation, she served as the lead for the Crew Test Support Team in Russia from 1998 to 1999.
Astronaut Whitson completed two six-month tours of duty aboard the International Space Station.
She has accumulated 377 days in space between two missions, which is the most for any woman.
Astronaut Whitson has performed a total of six career spacewalks, adding up to 39 hours and 46 minutes! She is also one of only a handful of people to perform spacewalks in both Russian and US spacesuits.
She is scheduled to launch in late 2016 as part of the Expedition 50/51.
Firsts:
Science Officer of the International Space Station
Female Commander for the International Space Station
Female to serve as Chief of the Astronaut Office
Follow her on social media to see how it takes a NASA Village to train her for her upcoming mission: Tumblr, Facebook and Twitter.
Studying our home planet is just as powerful as exploring what’s beyond it.
Surface Water and Ocean Topography (SWOT) is a joint mission developed by NASA and the French space agency Centre National d’Études Spatiales (CNES), with contributions from the Canadian Space Agency and the UK Space Agency. It will track water on more than 90% of Earth’s surface and help communities, scientists, and researchers better understand this finite and vital resource. And it’s launching this month!
An important part of predicting our future climate is determining at what point Earth’s ocean water slows down its absorption of the excess heat in the atmosphere and starts releasing that heat back into the air, where it could accelerate global warming. SWOT will provide crucial information about this global heat exchange between the ocean and the atmosphere, enabling researchers to test and improve future climate forecasts.
The satellite will also offer insights to improve computer models for sea level rise projections and coastal flood forecasting.
Data from SWOT will additionally help scientists, engineers, water managers, and others better monitor drought conditions in lakes and reservoirs and improve flood forecasts for rivers.
SWOT will measure the height of water in Earth’s lakes, rivers, reservoirs, and the ocean, giving scientists the ability to track the movement of water around the world.
SWOT’s eye in the sky will provide a truly global view of the water on more than 90% of Earth’s surface, enriching humankind’s understanding of how the ocean reacts to and influences climate change along with what potential hazards – including floods – lie ahead in different regions of the world.
Because everything is better in HD 😉, SWOT will view Earth’s ocean and freshwater bodies with unprecedented clarity compared to other satellites, much like a high-definition television delivers a picture far more detailed than older models. This means that SWOT will be able to “see” ocean features – like fronts and eddies – that are too small for current space-based instruments to detect. Those measurements will help improve researchers’ understanding of the ocean’s role in climate change.
Not only will the satellite show where – and how fast – sea level is rising, it will also reveal how coastlines around the world are changing. It will provide similar high-definition clarity for Earth’s lakes, rivers, and reservoirs, many of which remain a mystery to researchers, who aren’t able to outfit every water body with monitoring instruments.
As climate change accelerates the water cycle, more communities around the world will be inundated with water while others won’t have enough. SWOT data will be used to monitor drought conditions and improve flood forecasts, providing essential information to water management agencies, disaster preparedness agencies, universities, civil engineers, and others who need to track water in their local areas. SWOT data also will help industries, like shipping, by providing measurements of water levels along rivers, as well as ocean conditions, including tides, currents, and storm surges.
With its innovative technology and commitment to engaging a diverse community of people who plan to use data from the mission, SWOT is blazing a trail for future Earth-observing missions. SWOT’s data and the tools to support researchers in analyzing the information will be free and accessible. This will help to foster research and applications activities by a wide range of users, including scientists, resource managers, and others who in the past may not have had the opportunity to access this kind of information. Lessons learned from SWOT will lead to new questions and improvements for future missions, including our upcoming Earth System Observatory, a constellation of missions focused on studying key aspects of our home planet.
Keep track of the mission here. And make sure to follow us on Tumblr for your regular dose of space!
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts