Ever wonder what it’s like to be a NASA astronaut? On Thursday, Oct. 29, NASA Astronaut Peggy Whitson will answer your questions! She’ll explain how it takes the NASA Village to help train for her mission to space, what the challenges of living in space are and what it’s like to be a NASA astronaut.
Fun facts about NASA Astronaut Peggy Whitson:
Astronaut Whitson was selected as an Astronaut Candidate in April 1996, and started training in August of the same year.
After completing two years of training and evaluation, she served as the lead for the Crew Test Support Team in Russia from 1998 to 1999.
Astronaut Whitson completed two six-month tours of duty aboard the International Space Station.
She has accumulated 377 days in space between two missions, which is the most for any woman.
Astronaut Whitson has performed a total of six career spacewalks, adding up to 39 hours and 46 minutes! She is also one of only a handful of people to perform spacewalks in both Russian and US spacesuits.
She is scheduled to launch in late 2016 as part of the Expedition 50/51.
Firsts:
Science Officer of the International Space Station
Female Commander for the International Space Station
Female to serve as Chief of the Astronaut Office
Follow her on social media to see how it takes a NASA Village to train her for her upcoming mission: Tumblr, Facebook and Twitter.
Known as the Horsehead Nebula – but you can call it Starbiscuit.
Found by our Hubble Space Telescope, this beauty is part of a much larger complex in the constellation Orion.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
... and we’re ‘GO’ for launch! 🚀
NASA Flight Integration Chief and past Mission Control Flight Director, Ginger Kerrick, is here answering your questions during this Tumblr Answer Time. Tune in and join the fun!
1. Our upcoming James Webb Space Telescope will act like a powerful time machine – because it will capture light that’s been traveling across space for as long as 13.5 billion years, when the first stars and galaxies were formed out of the darkness of the early universe.
2. Webb will be able to see infrared light. This is light that is just outside the visible spectrum, and just outside of what we can see with our human eyes.
3. Webb’s unprecedented sensitivity to infrared light will help astronomers to compare the faintest, earliest galaxies to today's grand spirals and ellipticals, helping us to understand how galaxies assemble over billions of years.
Hubble’s infrared look at the Horsehead Nebula. Credit: NASA/ESA/Hubble Heritage Team
4. Webb will be able to see right through and into massive clouds of dust that are opaque to visible-light observatories like the Hubble Space Telescope. Inside those clouds are where stars and planetary systems are born.
5. In addition to seeing things inside our own solar system, Webb will tell us more about the atmospheres of planets orbiting other stars, and perhaps even find the building blocks of life elsewhere in the universe.
Credit: Northrop Grumman
6. Webb will orbit the Sun a million miles away from Earth, at the place called the second Lagrange point. (L2 is four times further away than the moon!)
7. To preserve Webb’s heat sensitive vision, it has a ‘sunshield’ that’s the size of a tennis court; it gives the telescope the equivalent of SPF protection of 1 million! The sunshield also reduces the temperature between the hot and cold side of the spacecraft by almost 600 degrees Fahrenheit.
8. Webb’s 18-segment primary mirror is over 6 times bigger in area than Hubble's and will be ~100x more powerful. (How big is it? 6.5 meters in diameter.)
9. Webb’s 18 primary mirror segments can each be individually adjusted to work as one massive mirror. They’re covered with a golf ball's worth of gold, which optimizes them for reflecting infrared light (the coating is so thin that a human hair is 1,000 times thicker!).
10. Webb will be so sensitive, it could detect the heat signature of a bumblebee at the distance of the moon, and can see details the size of a US penny at the distance of about 40 km.
BONUS! Over 1,200 scientists, engineers and technicians from 14 countries (and more than 27 U.S. states) have taken part in designing and building Webb. The entire project is a joint mission between NASA and the European and Canadian Space Agencies. The telescope part of the observatory was assembled in the world’s largest cleanroom at our Goddard Space Flight Center in Maryland.
Webb is currently at Northrop Grumman where the telescope will be mated with the spacecraft and undergo final testing. Once complete, Webb will be packed up and be transported via boat to its launch site in French Guiana, where a European Space Agency Ariane 5 rocket will take it into space.
Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
On Aug. 21, all of North America will experience a solar eclipse.
If skies are clear, eclipse-watchers will be able to see a partial solar eclipse over several hours, and some people – within the narrow path of totality – will see a total solar eclipse for a few moments.
It’s never safe to look at the Sun, and an eclipse is no exception. During a partial eclipse (or on any regular day) you must use special solar filters or an indirect viewing method to watch the Sun.
If you have solar viewing glasses, check to make sure they’re safe and undamaged before using them to look at the Sun. Make sure you put them on before looking up at the Sun, and look away before removing them. Eclipse glasses can be used over your regular eyeglasses, but they should never be used when looking through telescopes, binoculars, camera viewfinders, or any other optical device.
If you don’t have eclipse glasses, you can still watch the eclipse indirectly! You can make a pinhole projector out of a box, or use any other object with tiny holes – like a piece of cardstock with a hole, or your outstretched, interlaced fingers – to project an image of the partially eclipsed Sun onto the ground.
Of course, if it’s cloudy (or you’d just rather stay inside), you can watch the whole thing online with us at nasa.gov/eclipselive. Tune in starting at noon ET.
If you’re in the path of totality, there will be a few brief moments when it is safe to look directly at the eclipse. Only once the Moon has completely covered the Sun and there is no light shining through is it safe to look at the eclipse. Make sure you put your eclipse glasses back on or return to indirect viewing before the first flash of sunlight appears around the Moon’s edge.
A solar eclipse happens when the Moon passes directly between the Sun and Earth, casting its shadow down on Earth’s surface. The path of totality – where the Moon completely covers the Sun – is traced out by the Moon’s inner shadow, the umbra. People within the Moon’s outer shadow, the penumbra, can see a partial eclipse.
The Moon’s orbit around Earth is tilted by about five degrees, meaning that its shadow usually doesn’t fall on Earth. Only when the Moon lines up exactly between the Sun and Earth do we see an eclipse.
Though the Sun is about 400 times wider than the Moon, it is also about 400 times farther away, making their apparent sizes match up almost exactly. This is what allows the Moon to block out the Sun’s bright face, while revealing the comparatively faint, pearly-white corona.
Eclipses are a beautiful sight to see, and they’re also helpful for our scientists, so we’re funding eleven ground-based science investigations to learn more about the Sun and Earth.
Total solar eclipses reveal the innermost regions of the Sun’s atmosphere, the corona. Though it’s thought to house the processes that kick-start much of the space weather that can influence Earth, as well as heating the whole corona to extraordinarily high temperatures, we can’t study this region at any other time. This is because coronagraphs – the instruments we use to study the Sun’s atmosphere by creating artificial eclipses – must cover up much of the corona, as well as the Sun’s face in order to produce clear images.
Eclipses also give us the chance to study Earth’s atmosphere under uncommon conditions: the sudden loss of solar radiation from within the Moon’s shadow. We’ll be studying the responses of both Earth’s ionosphere – the region of charged particles in the upper atmosphere – and the lower atmosphere.
Learn all about the Aug. 21 eclipse at eclipse2017.nasa.gov, and follow @NASASun on Twitter and NASA Sun Science on Facebook for more. Watch the eclipse through the eyes of NASA at nasa.gov/eclipselive starting at 12 PM ET on Aug. 21.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Today – Thursday, June 21 – is the summer solstice in the northern hemisphere. But what causes this change in seasons? And what exactly is a solstice? It’s all about Earth’s tilt!
Many people believe that Earth is closer to the Sun in the summer and that is why it is hotter. And, likewise, they think Earth is farthest from the Sun in the winter.
Although this idea makes sense, it is incorrect. There is a different reason for Earth's seasons.
Earth's axis is an imaginary pole going right through the center of Earth from "top" to "bottom." Earth spins around this pole, making one complete turn each day. That is why we have day and night, and why every part of Earth's surface gets some of each.
Earth has seasons because its axis doesn't stand up straight. Today, the north pole is tipped toward the Sun, and the south pole is tipped away from the Sun. The northern summer solstice is an instant in time when the north pole of the Earth points more directly toward the Sun than at any other time of the year. It marks the beginning of summer in the northern hemisphere and winter in the southern hemisphere.
To mark the beginning of summer, here are four ways to enjoy the many wonders of space throughout the season:
1. Spot the International Space Station
As the third brightest object in the sky, the International Space Station is easy to see if you know when to look up. Sign up to get alerts when the station is overhead: https://spotthestation.nasa.gov/. Visible to the naked eye, it looks like a fast-moving plane only much higher and traveling thousands of miles an hour faster!
2. Treat your ears to space-related podcasts
From our “Gravity Assist” podcast that takes you on a journey through the solar system (including the Sun!) to our “NASA in Silicon Valley” podcast that provides an in-depth look at people who push the boundaries of innovation, we have podcast offerings that will suit everyone’s taste. For a full list of our podcasts, visit https://www.nasa.gov/podcasts.
3. Explore space by downloading NASA apps
Our apps for smartphones, tablets and digital media players showcase a huge collection of space-related content, including images, videos on-demand, NASA Television, mission information, feature stories, satellite tracking and much more. For a full list of our apps available for download, visit https://www.nasa.gov/connect/apps.html
4. Watch launches to space
This summer, we have multiple opportunities for you to take in the sights of spacecraft launches that will deliver supplies and equipment to astronauts living aboard the International Space Station, explore our solar system and much more. Be sure to mark your calendar for upcoming launches and landings!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What are the different fields of Earth Science? Are they related to each other?
Dangling in a previously unexplored lava tunnel on the Moon...
...with a massive solar flare passing overhead...
...causing unsafe radiation levels.
All communications have been interrupted.
Status of Commander Callie Rodriguez: unknown.
In our first issue of "First Woman," we followed Callie on her trailblazing journey to the Moon. Find out what’s next for our fictional first woman in a story inspired by real NASA astronauts and our upcoming Artemis missions to land the first female astronaut and person of color on the lunar surface.
See what discoveries – and challenges – lay ahead for Callie and her fellow human and robotic explorers as they forge a path to expand humanity's understanding of the universe.
Coming soon in English and Spanish at nasa.gov/calliefirst!
Make sure to follow us on Tumblr for your regular dose of space!
Around every star there could be at least one planet, so we’re bound to find one that is rocky, like Earth, and possibly suitable for life. While we’re not quite to the point where we can zoom up and take clear snapshots of the thousands of distant worlds we’ve found outside our solar system, there are ways we can figure out what exoplanets light years away are made of, and if they have signs of basic building blocks for life. Here are a few current and upcoming missions helping us explore new worlds:
Kepler
Launched in 2009, the Kepler space telescope searched for planets by looking for telltale dips in a star’s brightness caused by crossing, or transiting, planets. It has confirmed more than 1,000 planets; of these, fewer than 20 are Earth-size (therefore possibly rocky) and in the habitable zone -- the area around a star where liquid water could pool on the surface of an orbiting planet. Astronomers using Kepler data found the first Earth-sized planet orbiting in the habitable zone of its star and one in the habitable zone of a sun-like star.
In May 2013, a second pointing wheel on the spacecraft broke, making it not stable enough to continue its original mission. But clever engineers and scientists got to work, and in May 2014, Kepler took on a new job as the K2 mission. K2 continues the search for other worlds but has introduced new opportunities to observe star clusters, young and old stars, active galaxies and supernovae.
Transiting Exoplanet Survey Satellite (TESS)
Revving up for launch around 2017-2018, NASA’s Transiting Exoplanet Survey Satellite (TESS) will find new planets the same way Kepler does, but right in the stellar backyard of our solar system while covering 400 times the sky area. It plans to monitor 200,000 bright, nearby stars for planets, with a focus on finding Earth and Super-Earth-sized planets.
Once we’ve narrowed down the best targets for follow-up, astronomers can figure out what these planets are made of, and what’s in the atmosphere. One of the ways to look into the atmosphere is through spectroscopy.
As a planet passes between us and its star, a small amount of starlight is absorbed by the gas in the planet’s atmosphere. This leaves telltale chemical “fingerprints” in the star’s light that astronomers can use to discover the chemical composition of the atmosphere, such as methane, carbon dioxide, or water vapor.
James Webb Space Telescope
Launching in 2018, NASA’s most powerful telescope to date, the James Webb Space Telescope (JWST), will not only be able to search for planets orbiting distant stars, its near-infrared multi-object spectrograph will split infrared light into its different colors- spectrum- providing scientists with information about an physical properties about an exoplanet’s atmosphere, including temperature, mass, and chemical composition.
Hubble Space Telescope
Hubble Space Telescope is better than ever after 25 years of science, and has found evidence for atmospheres bleeding off exoplanets very close to their stars, and even provided thermal maps of exoplanet atmospheres. Hubble holds the record for finding the farthest exoplanets discovered to date, located 26,000 light-years away in the hub of our Milky Way galaxy.
Chandra X-ray Observatory
Chandra X-ray Observatory can detect exoplanets passing in front of their parent stars. X-ray observations can also help give clues on an exoplanet’s atmosphere and magnetic fields. It has observed an exoplanet that made its star act much older than it actually is.
Spitzer Space Telescope
Spitzer Space Telescope has been unveiling hidden cosmic objects with its dust-piercing infrared vision for more than 12 years. It helped pioneer the study of atmospheres and weather on large, gaseous exoplanets. Spitzer can help narrow down the sizes of exoplanets, and recently confirmed the closest known rocky planet to Earth.
SOFIA
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airplane mounted with an infrared telescope that can fly above more than 99 percent of Earth's atmospheric water vapor. Unlike most space observatories, SOFIA can be routinely upgraded and repaired. It can look at planetary-forming systems and has recently observed its first exoplanet transit.
What’s Coming Next?
Analyzing the chemical makeup of Earth-sized, rocky planets with thin atmospheres is a big challenge, since smaller planets are incredibly faint compared to their stars. One solution is to block the light of the planets' glaring stars so that we can directly see the reflected light of the planets. Telescope instruments called coronagraphs use masks to block the starlight while letting the planet's light pass through. Another possible tool is a large, flower-shaped structure known as the starshade. This structure would fly in tandem with a space telescope to block the light of a star before it enters the telescope.
All images (except SOFIA) are artist illustrations.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
They are historically well known for making difficult calls and guiding the crew through "Houston, we've had a problem" situations, but in all spaceflight operations, they are ultimately responsible for the success of the mission.
We're looking for a new class of Flight Directors to join our team, and there are a few things to know.
MYTH: You have to have already been a flight controller in Mission Control at NASA to become a flight director.
FACT: Although many flight directors have previously been NASA flight controllers, that is not a prerequisite to apply. The necessary experience could come from the military, other spaceflight organizations or areas that operate in similar high-stakes conditions.
MYTH: You have to already have a special spaceship flying license to apply.
FACT: The only place to get certified is on the job at NASA. Once chosen, the new flight directors will receive training on flight control and vehicle systems, as well as operational leadership and risk management.
MYTH: All flight directors have advanced degrees like, a PhD.
FACT: While a Bachelor's degree in engineering, biological science, physical science, computer science or mathematics from an accredited university is necessary, an advanced degree is not required to become a flight director.
MYTH: Flight directors are required to have experience in the space industry.
FACT: While you need at least three years of related, progressively responsible professional experience to apply, it can come from a variety of industries as long as it represents time-critical decision-making experience in high-stress, high-risk environments.
MYTH: Only astronauts become flight directors and vice versa.
FACT: To date, only one astronaut, T.J. Creamer, has become a flight director, and no flight directors have become astronauts. However, members of the flight controller teams have become astronauts. The "capsule communicator," or CAPCOM, role in Mission Control is more often filled by astronauts because the CAPCOM is the one responsible for relaying the flight director's decisions to the astronauts in space.
Applicants must meet the following minimum requirements before submitting an application:
Be a U.S. citizen.
Have a Bachelor's degree from an accredited institution in engineering, biological science, physical science, computer science or math.
Have at least three years of related, progressively responsible professional experience.
Applications for our next Flight Director class open on Dec. 3, 2021 and close Dec. 16, 2021! Visit: go.nasa.gov/FlightDirector
Learn more about what Flight Directors do with our Everything About Mission Control Houston video featuring Flight Director Mary Lawrence!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
As our Cassini spacecraft made its first-ever dive through the gap between Saturn and its rings on April 26, 2017, one of its imaging cameras took a series of rapid-fire images that were used to make this movie sequence. Credits: NASA/JPL-Caltech/Space Science Institute/Hampton University
Our Cassini spacecraft has begun its final mission at Saturn. Some dates to note:
May 28, 2017: Cassini makes its riskiest ring crossing as it ventures deeper into Saturn's innermost ring (D ring).
June 29, 2017: On this day in 2004, the Cassini orbiter and its travel companion the European Space Agency's Huygens probe arrived at Saturn.
September 15, 2017: In a final, spectacular dive, Cassini will plunge into Saturn - beaming science data about Saturn's atmosphere back to Earth to the last second. It's all over at 5:08 a.m. PDT.
More about the Grand Finale
June 1, 2017: Target date of the cargo launch. The uncrewed Dragon spacecraft will launch on a Falcon 9 from Launch Complex 39A at our Kennedy Space Center in Florida. The payload includes NICER, an instrument to measure neutron stars, and ROSA, a Roll-Out Solar Array that will test a new solar panel that rolls open in space like a party favor.
More
July 4, 2017: Twenty years ago, a wagon-sized rover named Sojourner blazed the trail for future Mars explorers - both robots and, one day, humans. Take a trip back in time to the vintage Mars Pathfinder websites:
More
August 20, 2017: Forty years and still going strong, our twin Voyagers mark 40 years since they left Earth.
More
August 21, 2017: All of North America will be treated to a rare celestial event: a total solar eclipse. The path of totality runs from Oregon to South Carolina.
More
Light a candle for the man who took rocketry from science fiction to science fact. On this day in 1882, Robert H. Goddard was born in Worcester, Massachusetts.
More
October 28, 2017: Howl (or look) at the moon with the rest of the world. It's time for the annual International Observe the Moon Night.
More
December 13, 2017: Forty-five years ago, Apollo 17 astronaut Gene Cernan left the last human footprint on the moon.
More
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts