What is an upcoming project/mission you're most excited for?
It is likely that I’ll be assigned a mission to the International Space Station (ISS) within the next few years. We’ve had a continuous presence on the Space Station for 17 years now, along with our international partners (Russian Space Agency, European Space Agency, Japanese Space Agency, and Canadian Space Agency). Missions on the ISS typically last 6 months. I’m incredibly excited to contribute to the impressive array of scientific experiments that we are conducting every day on ISS (I am a scientist after all!), and very much look forward to the potential of going for a spacewalk and gaining that perspective of gazing down on the fragile blue ball that is our home from above. Beyond that, being part of test missions on the Orion spacecraft (currently under construction at NASA!) would be an extraordinary opportunity. The current NASA plan is to send astronauts in Orion in a mission that will go 40,000 miles beyond the Moon in the early 2020s, reaching a distance further than that ever travelled by humans. I’d certainly be game for that!
Ion thrusters are being designed for a wide variety of missions – from keeping communications satellites in the proper position to propelling spacecraft throughout our solar system. But, what exactly is ion propulsion and how does an ion thruster work? Great question! Let’s take a look:
Regular rocket engines: You take a gas and you heat it up, or put it under pressure, and you push it out of the rocket nozzle, and the action of the gas going out of the nozzle causes a reaction that pushes the spacecraft in the other direction.
Ion engines: Instead of heating the gas up or putting it under pressure, we give the gas xenon a little electric charge, then they’re called ions, and we use a big voltage to accelerate the xenon ions through this metal grid and we shoot them out of the engine at up to 90,000 miles per hour.
Something interesting about ion engines is that it pushes on the spacecraft as hard as a single piece of paper pushes on your hand while holding it. In the zero gravity, frictionless, environment of space, gradually the effect of this thrust builds up. Our Dawn spacecraft uses ion engines, and is the first spacecraft to orbit two objects in the asteroid belt between Mars and Jupiter.
To give you a better idea, at full throttle, it would take our Dawn spacecraft four days to accelerate from zero to sixty miles per hour. That may sounds VERY slow, but instead of thrusting for four days, if we thrust for a week or a year as Dawn already has for almost five years, you can build up fantastically high velocity.
Why use ion engines? This type of propulsion give us the maneuverability to go into orbit and after we’ve been there for awhile, we can leave orbit and go on to another destination and do the same thing.
As the commercial applications for electric propulsion grow because of its ability to extend the operational life of satellites and to reduce launch and operation costs, we are involved in work on two different ion thrusters of the future: the NASA Evolutionary Xenon Thruster (NEXT) and the Annular Engine. These new engines will help reduce mission cost and trip time, while also traveling at higher power levels.
Learn more about ion propulsion HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We've created a virtual Mars photo booth, 3D rover experience and more for you to put your own creative touch on wishing Perseverance well for her launch to the Red Planet! Check it out, HERE.
Don’t forget to mark the July 30 launch date on your calendars!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We’ve just added two more science missions to our lineup! The two selected missions have the potential to open new windows on one of the earliest eras in the history of our solar system – a time less than 10 millions years after the birth of our sun.
The missions, known as Lucy and Psyche, were chosen from five finalists and will proceed to mission formulation.
Lucy, a robotic spacecraft, will visit a target-rich environment of Jupiter’s mysterious Trojan asteroids. Scheduled to launch in October 2021, the spacecraft is slated to arrive at its first destination, a main asteroid belt, in 2025.
Then, from 2027 to 2033, Lucy will explore six Jupiter Trojan asteroids. These asteroids are trapped by Jupiter’s gravity in two swarms that share the planet’s orbit, one leading and one trailing Jupiter in its 12-year circuit around the sun. The Trojans are thought to be relics of a much earlier era in the history of the solar system, and may have formed far beyond Jupiter’s current orbit.
Studying these Trojan asteroids will give us valuable clues to deciphering the history of the early solar system.
The Psyche mission will explore one of the most intriguing targets in the main asteroid belt – a giant metal asteroid, known as 16 Psyche, about three times farther away from the sun than is the Earth. The asteroid measures about 130 miles in diameter and, unlike most other asteroids that are rocky or icy bodies, it is thought to be comprised of mostly metallic iron and nickel, similar to Earth’s core.
Scientists wonder whether psyche could be an exposed core of an early planet that could have been as large as Mars, but which lost its rocky outer layers due to a number of violent collisions billions of years ago.
The mission will help scientists understand how planets and other bodies separated into their layers early in their histories. The Psyche robotic mission is targeted to launch in October of 2023, arriving at the asteroid in 2030, following an Earth gravity assist spacecraft maneuver in 2024 and a Mars flyby in 2025.
Get even more information about these two new science missions HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Did you know that our planet is surrounded by giant, donut-shaped clouds of radiation?
Here's what you need to know.
The Van Allen radiation belts exist because fast-moving charged particles get trapped inside Earth's natural magnetic field, forming two concentric donut-shaped clouds of radiation. Other planets with global magnetic fields, like Jupiter, also have radiation belts.
Earth's radiation belts were first identified in 1958 by Explorer 1, the first U.S. satellite. The inner belt, composed predominantly of protons, and the outer belt, mostly electrons, would come to be named the Van Allen Belts, after James Van Allen, the scientist who led the charge designing the instruments and studying the radiation data from Explorer 1.
In 2012, we launched the twin Van Allen Probes to study the radiation belts. Over the past six years, these spacecraft have orbited in and out of the belts, providing brand-new data about how the radiation belts shift and change in response to solar activity and other factors.
Shortly after launch, the Van Allen Probes detected a previously-unknown third radiation belt, created by a bout of strong solar activity. All the extra energy directed towards Earth meant that some particles trapped in our planet's magnetic field were swept out into the usually relatively empty region between the two Van Allen Belts, creating an additional radiation belt.
Originally designed for a two-year mission, the Van Allen Probes have spent more than six years collecting data in the harsh radiation environment of the Van Allen Belts. In spring 2019, we're changing their orbit to bring the perigee — the part of the orbit where the spacecraft are closest to Earth — about 190 miles lower. This ensures that the spacecraft will eventually burn up in Earth's atmosphere, instead of orbiting forever and becoming space junk.
Because the Van Allen Probes have proven to be so hardy, they'll continue collecting data throughout the final months of the mission until they run out of fuel. As they skim through the outer reaches of Earth's atmosphere, scientists and engineers will also learn more about how atmospheric oxygen can degrade satellite measurements — information that can help build better satellites in the future.
Keep up with the latest on the mission on Twitter, Facebook or nasa.gov/vanallenprobes.
That’s a wrap! Thank you for all the great questions.
Keep up with Nick’s journey on and off the station by following him on Twitter at @AstroHague. Follow NASA on Tumblr for your regular dose of space!
Let the planet-hunting begin!
Our Transiting Exoplanet Survey Satellite (TESS), which will scan the skies to look for planets beyond our solar system—known as exoplanets—is now in Florida to begin preparations for launch in April. Below, 10 Things to know about the many, many unknown planets out there awaiting our discovery.
We call planets in our solar system, well, planets, but the many planets we’re starting to discover outside of our solar system are called exoplanets. Basically, they’re planets that orbit another star.
Remember the major 2016 announcement that we had discovered seven planets 40 light-years away, orbiting a star called TRAPPIST-1? Those are all exoplanets. (Here’s a refresher.)
Just last month, our Kepler telescope discovered 95 new exoplanets beyond our solar system (on top of the thousands of exoplanets Kepler has discovered so far). The total known planet count beyond our solar system is now more than 3,700. The planets range in size from mostly rocky super-Earths and fluffy mini-Neptunes, to Jupiter-like giants. They include a new planet orbiting a very bright star—the brightest star ever discovered by Kepler to have a transiting planet.
How many more exoplanets are out there waiting to be discovered? TESS will monitor more than 200,000 of the nearest and brightest stars in search of transit events—periodic dips in a star’s brightness caused by planets passing in front—and is expected to find thousands of exoplanets.
Our upcoming James Webb Space Telescope, will provide important follow-up observations of some of the most promising TESS-discovered exoplanets. It will also allow scientists to study their atmospheres and, in some special cases, search for signs that these planets could support life.
TESS is scheduled to launch on a SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station nearby our Kennedy Space Center in Florida, no earlier than April 16, pending range approval.
In 1995, 51 Pegasi b (also called "Dimidium") was the first exoplanet discovered orbiting a star like our Sun. This find confirmed that planets like the ones in our solar system could exist elsewhere in the universe.
A recent statistical estimate places, on average, at least one planet around every star in the galaxy. That means there could be a trillion planets in our galaxy alone, many of them in the range of Earth’s size.
Of course, our ultimate science goal is to find unmistakable signs of current life. How soon can that happen? It depends on two unknowns: the prevalence of life in the galaxy and a bit of luck. Read more about the search for life.
No need to be an astronaut. Take a trip outside our solar system with help from our Exoplanet Travel Bureau.
Read the full version of this week’s ‘10 Things to Know’ article HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Earlier this month, the southeastern United States was struck by Hurricane Michael. After the category 4 storm made landfall on Oct. 10, 2018, Hurricane Michael proceeded to knock out power for at least 2.5 million customers across Florida, Georgia, North Carolina, and Virginia.
In this data visualization, you can clearly see where the lights were taken out in Panama City, Florida. A team of our scientists from Goddard Space Flight Center processed and corrected the raw data to filter out stray light from the Moon, fires, airglow, and any other sources that are not electric lights. They also removed atmosphere interference from dust, haze, and clouds.
In the visualization above, you can see a natural view of the night lights—and a step of the filtering process in an effort to clean up some of the cloud cover. The line through the middle is the path Hurricane Michael took.
Although the damage was severe, tens of thousands of electric power industry workers from all over the country—and even Canada—worked together to restore power to the affected areas. Most of the power was restored by Oct. 15, but some people still need to wait a little longer for the power grids to be rebuilt. Read more here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Hi! The Sun is so bright I need shades... that are ISO 12312-2 compliant! So glad that you are all here and excited about the eclipse. I’m Alexa Halford and ready to answer your questions.
One month ago, SpaceX’s Dragon capsule arrived at the International Space Station. Now it’s time for the Dragon to come home. The return trip, a crucial part of its mission, brings scientific hardware, data and experiments down to waiting researchers.
Check out a few of the pieces of research taking that ride back to Earth.
You may one day get to experience the product of The ISS Experience. A team is creating a cinematic virtual reality (VR) film from footage taken during in space covering crew life, execution of science and the international partnerships involved on the space station.
Every week or so, footage is transferred from the camera onto solid state drives – an original and a backup – for storage and downlinking. One of each pair of drives returns to Earth for editing and production.
Amyloid fibrils, a conglomeration of proteins that can build up in the body, are associated with a number of neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. The Amyloid Aggregation investigation assesses whether microgravity affects formation of these fibrils.
Samples exposed to microgravity are coming back to Earth using a facility that maintains a chilly temperature of -20°C. Teams on the ground must quickly retrieve the equipment and keep the samples at -20°C until they are analyzed.
Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, are bowling-ball sized satellites used to study formation flying, control algorithms and material science.
First sent to the station in 2006, these satellites have been employed in a dozen different investigations.
The Dragon brings back hardware from two recent experiments that examined the behavior of fluids in microgravity, SPHERES Tether Slosh and SPHERES-Slosh.
The Fiber Optic Production investigation created optical fibers on the space station using a blend of materials called ZBLAN to see whether making the fibers in microgravity has advantages over the process used on Earth. ZBLAN optical fibers offer high bandwidth for the telecommunications industry, and potential applications for uses like laser surgery and environmental monitoring.
The fiber produced on the space station is coming to Earth for testing to help verify previous studies and guide future efforts to manufacture large volumes of such fiber in microgravity.
Read more about the science returning on Dragon here!
For daily updates, follow @ISS_Research, Space Station Research and Technology News or our Facebook. Follow the ISS National Lab for information on its sponsored investigations. For opportunities to see the space station pass over your town, check out Spot the Station.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
This nebula began forming about 10,000 years ago when a dying star started flinging material into space. When Sun-like stars exhaust their nuclear fuel, they become unstable and blast their outer layers of gas away into space (bad news for any planets in the area). This Hubble Space Telescope image shows a snapshot of the unworldly process.
Streams of high-energy ultraviolet radiation cause the expelled material to glow, creating a beautiful planetary nebula — a term chosen for the similarity in appearance to the round disk of a planet when viewed through a small telescope.
The Eskimo Nebula got its nickname because it resembles a face surrounded by a fur parka. The “parka” is a disk of material embellished by a ring of comet-shaped objects with their tails streaming away from the central, dying star. In the middle of the nebula is a bubble of material that is being blown outward by the star’s intense “wind” of high-speed material.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts