Rising majestically above the telescopes of ESO’s La Silla Observatory in Chile we see the Milky Way accompanied by its two dwarf neighbour galaxies, the Large and Small Magellanic Clouds.
Credit: ESO/A. Santerne
is there anything you can tell us to expand on the space time ripples found in simulated black hole collisions?
Hi!
In one of my other responses I explained the whole concept of space time, here’s how i explained that:
A way that you can picture the bending of space time is this:
Picture two chairs, the backs facing each other. Then tape one end of a blanket to one of the chair backs and the other end of the blanket to the other chair back. What you have now should like this:
Now, if you were to place a tennis ball somewhere on the light blue blanket (top blanket), that blanket would no longer be flat, there would be a bend or a curve in it. Let’s say you put a basketball on the top blanket instead of a tennis ball. Since the basketball is bigger, the bend/curve that it makes will be a lot bigger than the tennis ball’s because the basketball has more mass.
So that blue blanket at the top of the chairs represents space time. If there were to be two large objects, let’s say basketballs, that were to “collide” (representing two black holes). Since they’re so large, they’d create these ripples in the blanket that can be observed.
Another easier way to think about it is like dropping a pebble into a lake. The bigger the pebble, the stronger and more frequent the ripples are. So since black holes are very massive, they create larger ripples compared to something smaller!
Astronomers haven’t been able to directly observe these ripples in space time, they were theorized by Einstein, however there’s an announcement being made all over the world today about data obtained from the Laser Interferometer Gravitational-Wave Observatory (LIGO)!
Here is a link talking a bit about that press conference!
I hope that helped to clarify everything! If not, feel free to ask again and I’ll try my best to clarify!
UPDATE: HERE are the findings of the conference, they’ve detected them for the first time!
Mosquitoes have a nasty reputation.
The species Aedes aegypti, for example, is currently responsible for spreading the Zika virus through the Americas and also infects humans with dengue fever, chikungunya and yellow fever.
This raises the question: Should there be an effort to get rid of Aedes aegypti for good?
“There’s been lots of debate in the last 10 years whether we should eradicate mosquitoes, or at least the 100 species or so that serve as disease vectors for humans,” says David Magnus, director of Stanford University’s Center for Biomedical Ethics. “If you look at the science, the majority [of scientists] think we could probably eliminate mosquitoes without too much harm on the environment.”
Read the full story here.
Illustration: Matthew Twombly
It was done in – wait for it – 1900! The first total solar eclipse to be filmed has recently been restored. The film was done by Nevil Maskelyne, an illusionist turned astronomic videographer for the British Royal Astronomical Society.
This 1900 film is actually Maskelyne’s second attempt at filming a total solar eclipse. His first attempt was in 1898, when he traveled all the way to India to be at the right place to view a predicted total eclipse. Maskelyne got there in time, but sadly, his film was stolen, and the crime remains unsolved and the film unrecovered.
▪︎Copernican armillary sphere.
Date: 1807-1846
Place of origin: Paris
From the source: Copernican armillary sphere from set of two armillary spheres and a celestial globe constructed in paper on pasteboard with metal fitments supported on a decorative mahogany baluster base. Shows planets out to Uranus, plus four asteroids, Ceres, Pallas, Juno & Vesta, first quarter 19th century.
Pi Day, the informal holiday beloved by math enthusiasts — and even by the math averse — is here! March 14 marks the yearly celebration of the mathematical constant π (pi).
What is Pi?
Pi (3.1415….) is the ratio of circumference to diameter in a circle. Any time you want to find out the distance around a circle when you have the distance across it, you will need this formula.
Despite its frequent appearance in math and science, you can’t write pi as a simple fraction or calculate it by dividing two integers. For this reason, pi is said to be “irrational.” Pi’s digits extend infinitely and without any pattern, adding to its intrigue and mystery.
How Do We Use Pi at NASA?
Measurements: Pi can be used to make measurements – like perimeter, area and volume.
For example, sometimes we use lasers to explode ice samples and study their composition. In this scenario, we can uses pi to calculate the width of the laser beam, which in turn can be used to calculate the amount of energy, or fluence, that hits the ice sample. A larger fluence equals a bigger explosion in the ice.
Commanding Rovers: Pi is also used every day commanding rovers on the Red Planet. Everything from taking images, turning the wheels, driving around, operating the robotic arm and even talking to Earth!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
From Pluto to the most Earth-like planet ever discovered…this years was a fantastic year in space. Here are the most notable astronomical events from 2015.
May you all journey well into 2016.
See all our infographics at: http://futurism.com/infographics/
On October 8 a privileged few could see auroras in abnormally low latitudes, as the spectacular pictures above taken in Wales and Northern England.
Via TON: Northern Lights Put On Spectacular Show As Aurora Borealis Lit Skies Over Wales And Yorkshire.
Asteroid Watch logo. August 5, 2019
Near Earth Asteroid
An asteroid 570 meters in diameter is expected to approach 8 million kilometers from our planet on August 10. The situation is of no concern to NASA specialists, who stress the large number of similar celestial objects that are spotted each year near the Earth. The space agency says it fears more those who are not listed.
Artist’s impression of 2006 QQ23 asteroid
According to NASA, an asteroid the size of a skyscraper will pass near the Earth on Saturday, August 10. Called “2006 QQ23”, the celestial object is approximately 570 meters in diameter and its trajectory will place it at a distance of 8 million kilometers from our planet, closer to home, says CNN. A “more or less benign” situation for experts from the American Space Agency. This asteroid is of a “moderate size” Lindley Johnson of NASA’s Global Coordinating Office for Defense says the asteroid is “of moderate size” and explains that half a dozen similar-sized aerolites are approaching each year. Not to mention that the solar system includes nearly 900 of a volume greater than that which advances towards the Earth. The specialists are therefore reassuring.
2006 QQ23 orbit
They explain having already studied the movements of “2006 QQ23” since the year 1901 and until 2200. Because a possible impact between the Earth and a foreign body of this size would cause significant damage over a large area . Even if this scenario occurred, NASA would then be able to launch a space mission to deflect the celestial object. When it comes to asteroids, “it’s the ones we do not know about that worry us,” says Kelly Fast, also a member of the Coordination Office. Related article: Asteroid’s surprise close approach illustrates need for more eyes on the sky https://orbiterchspacenews.blogspot.com/2019/08/asteroids-surprise-close-approach.html Additional information: Asteroid Watch: For more information about asteroids and near-Earth objects, visit: http://www.jpl.nasa.gov/asteroidwatch and http://www.nasa.gov/asteroid . Updates about near-Earth objects are also available by following AsteroidWatch on Twitter at http://www.twitter.com/asteroidwatch . Near-Earth Object Program Office: http://neo.jpl.nasa.gov/ Images, Text, Credits: AFP/NASA/ESA/Orbiter.ch Aerospace/Roland Berga. Best regards, Orbiter.ch Full article
This is a studyblr for everyone have some passion for science, especially astronomy and biology
129 posts