It’s interesting to watch the procedures needed to make repairs during a spacewalk. They don’t have the luxury of being able during a plumbing project to make 4 trips to the hardware store for parts I broke and have to make a new drain line or supply line.
If you need to fix something on Earth, you could go to a store, buy the tools you need, and get started. In space, it’s not that easy.
Aside from the obvious challenges associated with space (like it being cold and there being no gravity), developing the right tools requires a great deal of creativity because every task is different, especially when the tools need to be designed from scratch. From the time an engineer dreams up the right tools to the time they are used in space, it can be quite a process.
On Nov. 15, astronauts Luca Parmitano and Drew Morgan began a series of spacewalks to repair an instrument called the Alpha Magnetic Spectrometer (AMS-2) on the exterior of the International Space Station. The first of four spacewalk focused on using specialized tools to remove shields and covers, to gain access to the heart of AMS to perform the repairs, and install a new cooling system.
The debris shield that covered Alpha Magnetic Spectrometer floats away toward Earth as astronaut Drew Morgan successfully releases it.
Once repaired, AMS will continue to help us understand more about the formation of the universe and search for evidence of dark matter and antimatter.
These spacewalks, or extravehicular activities (EVAs), are the most complex of their kind since the servicing of the Hubble Space Telescope. AMS is particularly challenging to repair not only because of the instrument’s complexity and sensitivity, but also because it was never designed to be fixed. Because of this design, it does not have the kinds of interfaces that make spacewalks easier, or the ability to be operated on with traditional multi-purpose tools. These operations are so complex, their design and planning has taken four years. Let’s take a look at how we got ready to repair AMS.
When designing the tools, our engineers need to keep in mind various complications that would not come into play when fixing something on Earth. For example, if you put a screw down while you’re on Earth, gravity will keep it there — in space, you have to consistently make sure each part is secure or it will float away. You also have to add a pressurized space suit with limited dexterity to the equation, which further complicates the tool design.
In addition to regular space complications, the AMS instrument itself presents many challenges — with over 300,000 data channels, it was considered too complex to service and therefore was not designed to one day be repaired or updated if needed. Additionally, astronauts have never before cut and reconnected micro-fluid lines (4 millimeters wide, less than the width of the average pencil) during a spacewalk, which is necessary to repair AMS, so our engineers had to develop the tools for this big first.
With all of this necessary out-of-the-box thinking, who better to go to for help than the teams that worked on the most well-known repair missions — the Hubble servicing missions and the space station tool teams? Building on the legacy of these missions, some of our same engineers that developed tools for the Hubble servicing missions and space station maintenance got to work designing the necessary tools for the AMS repair, some reworked from Hubble, and some from scratch. In total, the teams from Goddard Space Flight Center’s Satellite Servicing Projects Division, Johnson Space Center, and AMS Project Office developed 21 tools for the mission.
Like many great inventions, it all starts with a sketch. Engineers figure out what steps need to be taken to accomplish the task, and imagine the necessary tools to get the job done.
From there, engineers develop a computer-aided design (CAD) model, and get to building a prototype. Tools will then undergo multiple iterations and testing with the AMS repair team and astronauts to get the design just right, until eventually, they are finalized, ready to undergo vibration and thermal vacuum testing to make sure they can withstand the harsh conditions of launch and use in the space environment.
Hex Head Capture Tool Progression:
Hex Head Capture Tool Used in Space:
One of the reasons the AMS spacewalks have been four years in the making is because the complexity of the repairs required the astronauts to take extra time to practice. Over many months, astronauts tasked with performing the spacewalks practiced the AMS repair procedures in numerous ways to make sure they were ready for action. They practiced in:
Virtual reality simulations:
The Neutral Buoyancy Laboratory:
The Active Response Gravity Offload System (ARGOS):
Astronauts use this testing to develop and practice procedures in space-like conditions, but also to figure out what works and doesn’t work, and what changes need to be made. A great example is a part of the repair that involves cutting and reconnecting fluid lines. When astronauts practiced cutting the fluid lines during testing here on Earth, they found it was difficult to identify which was the right one to cut based on sight alone.
The tubes on the AMS essentially look the same.
After discussing the concern with the team monitoring the EVAs, the engineers once again got to work to fix the problem.
And thus, the Tube Cutting Guide tool was born! Necessity is the mother of invention and the team could not have anticipated the astronauts would need such a tool until they actually began practicing. The Tube Cutting Guide provides alignment guides, fiducials and visual access to enable astronauts to differentiate between the tubes. After each of eight tubes is cut, a newly designed protective numbered cap is installed to cover the sharp tubing.
With the tools and repair procedures tested and ready to go, they launched to the International Space Station earlier this year. Now they’re in the middle of the main event – Luca and Drew completed the first spacewalk last Friday, taking things apart to access the interior of the AMS instrument. Currently, there are three other spacewalks scheduled over the course of a month. The next spacewalk will happen on Nov. 22 and will put the Tube Cutting Guide to use when astronauts reconnect the tubes to a new cooling system.
With the ingenuity of our tool designers and engineers, and our astronauts’ vigorous practice, AMS will be in good hands.
Check out the full video for the first spacewalk. Below you can check out each of the tools above in action in space!
Debris Shield Worksite: 2:29:16 – Debris Shield Handling Aid 2:35:25 – Hex Head Capture Tool (first) 2:53:31 – #10 Allen Bit 2:54:59 – Capture Cages 3:16:35 – #10 Allen Bit (diagonal side) 3:20:58 – Socket Head Capture Tool 3:33:35 – Hex Head Capture Tool (last) 3:39:35 – Fastener Capture Block 3:40:55 – Debris Shield removal 3:46:46 – Debris Shield jettison
Handrail Installations: 4:00:53 – Diagonal Beam Handrail Install 4:26:09 – Nadir Vacuum Case Handrail Install 4:33:50 – Zenith Vacuum Case Handrail InstallVertical Support Beam (VSB)
Vertical Support Beam (VSB) Worksite: 5:04:21 – Zip Tie Cutter 5:15:27 – VSB Cover Handling Aid 5:18:05 – #10 Allen Bit 5:24:34 – Socket Head Capture Tool 5:41:54 – VSB Cover breaking 5:45:22 – VSB Cover jettison 5:58:20 – Top Spacer Tool & M4 Allen Bit 6:08:25 – Top Spacer removal 7:42:05 - Astronaut shoutout to the tools team
Virtual Reality from nordgrenexperience.com
Go camping with this transportable folding apartment. ⛺️
Nordgren Experience
Reimagining solar energy. ☀︎
Do you need a new smart phone? Check out, on the go phones at nordgrenexperience.com
https://www.nordgrenexperience.com/product-page/samsung-galaxy-s20-plus-g985fd-dual-sim-8gb-ram-128gb-lte-cosmic-grey
1. Is your phone looking for something? Constantly searching for 4G signal, wifi or eternal love can be a drain on the resources of even the most parsimonious gadget. This applies particularly if your phone is looking for more than one thing at once, for example if it has fallen in love with your router. Consider leaving them together for long enough that they can decide they’re not that into each other after all.
2. Check the permissions of any apps you have installed. Are they allowed to use your location? Are they allowed to use the microphone? Are they allowed to provide asylum for refugee artificial intelligences? Sustaining an artificial intelligence can reduce your battery life. Be aware that turning this permission off may lead to any ejected artificial intelligences taking refuge in other smart appliances, such as your fridge and lighting system, or in extreme cases to the snuffing out of a delicate, beautiful miracle of emerging cognition.
3. Do you actually have a battery? Some of the most severe battery life problems are caused by not actually having a battery. You can check by sawing off the bottom end of your smartphone and shaking it a bit to see what falls out. Don’t worry, you can glue everything back in again if it turns out you do have one after all.
4. It is also possible that your smartphone is using extra battery in order to annoy you. Check your settings. On an iPhone, battery settings can be found under Settings > Battery. Check if the option ‘User-irritating mode’ is switched on. Turning this off can save up to ten percent of battery charge.
5. Settings > Battery will also reveal how much battery your apps have been committing. Battery is a serious crime and your phone is legally responsible for the behaviour of its apps (Fondleslab vs. Jenkins, 2016). Your phone may be sentenced to years in prison if convicted, which is a problem, because phones are often unwelcome in prisons. Give your apps a stern talking-to at once.
6. Jam. There is jam running down your smartphone battery. How? Why? What kind of slob are you, honestly?
7. Consider your situation further. Are you a jam-powered flesh mannequin, or are you yourself a simulation being run by an alternative level of intelligence? Are you sure? In the latter case, there remains a possibility that you may in fact be being simulated by your smartphone. Your best bet at preserving battery life in this case is to spend as much time as possible in sleep mode.
Such an Amazing Piece of Art
Find a new phone at nordgenexperience.com
Addicted to positive stimulus...
If you need a more down to earth way of finding out the time check out the smart watches, amazfit at https://bit.ly/3eXrHo3 and phones at nordgrenexperience.com
We are set to send a new technology to space that will change the way we navigate spacecraft — even how we’ll send astronauts to Mars and beyond. Built by our Jet Propulsion Laboratory in Pasadena, California, the Deep Space Atomic Clock is a technology demonstration that will help spacecraft navigate autonomously. No larger than a toaster oven, the instrument will be tested in Earth orbit for one year, with the goal of being ready for future missions to other worlds.
Here are five key facts to know about our Deep Space Atomic Clock:
The Deep Space Atomic Clock is a sibling of the atomic clocks you interact with every day on your smart phone. Atomic clocks aboard satellites enable your phone’s GPS application to get you from point A to point B by calculating where you are on Earth, based on the time it takes the signal to travel from the satellite to your phone.
But spacecraft don’t have GPS to help them find their way in deep space; instead, navigation teams rely on atomic clocks on Earth to determine location data. The farther we travel from Earth, the longer this communication takes. The Deep Space Atomic Clock is the first atomic clock designed to fly onboard a spacecraft that goes beyond Earth’s orbit, dramatically improving the process.
Today, we navigate in deep space by using giant antennas on Earth to send signals to spacecraft, which then send those signals back to Earth. Atomic clocks on Earth measure the time it takes a signal to make this two-way journey. Only then can human navigators on Earth use large antennas to tell the spacecraft where it is and where to go.
If we want humans to explore the solar system, we need a better, faster way for the astronauts aboard a spacecraft to know where they are, ideally without needing to send signals back to Earth. A Deep Space Atomic Clock on a spacecraft would allow it to receive a signal from Earth and determine its location immediately using an onboard navigation system.
Any atomic clock has to be incredibly precise to be used for this kind of navigation: A clock that is off by even a single second could mean the difference between landing on Mars and missing it by miles. In ground tests, the Deep Space Atomic Clock proved to be up to 50 times more stable than the atomic clocks on GPS satellites. If the mission can prove this stability in space, it will be one of the most precise clocks in the universe.
Your wristwatch and atomic clocks keep time in similar ways: by measuring the vibrations of a quartz crystal. An electrical pulse is sent through the quartz so that it vibrates steadily. This continuous vibration acts like the pendulum of a grandfather clock, ticking off how much time has passed. But a wristwatch can easily drift off track by seconds to minutes over a given period.
An atomic clock uses atoms to help maintain high precision in its measurements of the quartz vibrations. The length of a second is measured by the frequency of light released by specific atoms, which is same throughout the universe. But atoms in current clocks can be sensitive to external magnetic fields and temperature changes. The Deep Space Atomic Clock uses mercury ions - fewer than the amount typically found in two cans of tuna fish - that are contained in electromagnetic traps. Using an internal device to control the ions makes them less vulnerable to external forces.
The Deep Space Atomic Clock will fly on the Orbital Test Bed satellite, which launches on the SpaceX Falcon Heavy rocket with around two dozen other satellites from government, military and research institutions. The launch is targeted for June 24, 2019 from NASA’s Kennedy Space Center in Florida and will be live-streamed here: https://www.nasa.gov/live
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.