If you need a more down to earth way of finding out the time check out the smart watches, amazfit at https://bit.ly/3eXrHo3 and phones at nordgrenexperience.com
We are set to send a new technology to space that will change the way we navigate spacecraft — even how we’ll send astronauts to Mars and beyond. Built by our Jet Propulsion Laboratory in Pasadena, California, the Deep Space Atomic Clock is a technology demonstration that will help spacecraft navigate autonomously. No larger than a toaster oven, the instrument will be tested in Earth orbit for one year, with the goal of being ready for future missions to other worlds.
Here are five key facts to know about our Deep Space Atomic Clock:
The Deep Space Atomic Clock is a sibling of the atomic clocks you interact with every day on your smart phone. Atomic clocks aboard satellites enable your phone’s GPS application to get you from point A to point B by calculating where you are on Earth, based on the time it takes the signal to travel from the satellite to your phone.
But spacecraft don’t have GPS to help them find their way in deep space; instead, navigation teams rely on atomic clocks on Earth to determine location data. The farther we travel from Earth, the longer this communication takes. The Deep Space Atomic Clock is the first atomic clock designed to fly onboard a spacecraft that goes beyond Earth’s orbit, dramatically improving the process.
Today, we navigate in deep space by using giant antennas on Earth to send signals to spacecraft, which then send those signals back to Earth. Atomic clocks on Earth measure the time it takes a signal to make this two-way journey. Only then can human navigators on Earth use large antennas to tell the spacecraft where it is and where to go.
If we want humans to explore the solar system, we need a better, faster way for the astronauts aboard a spacecraft to know where they are, ideally without needing to send signals back to Earth. A Deep Space Atomic Clock on a spacecraft would allow it to receive a signal from Earth and determine its location immediately using an onboard navigation system.
Any atomic clock has to be incredibly precise to be used for this kind of navigation: A clock that is off by even a single second could mean the difference between landing on Mars and missing it by miles. In ground tests, the Deep Space Atomic Clock proved to be up to 50 times more stable than the atomic clocks on GPS satellites. If the mission can prove this stability in space, it will be one of the most precise clocks in the universe.
Your wristwatch and atomic clocks keep time in similar ways: by measuring the vibrations of a quartz crystal. An electrical pulse is sent through the quartz so that it vibrates steadily. This continuous vibration acts like the pendulum of a grandfather clock, ticking off how much time has passed. But a wristwatch can easily drift off track by seconds to minutes over a given period.
An atomic clock uses atoms to help maintain high precision in its measurements of the quartz vibrations. The length of a second is measured by the frequency of light released by specific atoms, which is same throughout the universe. But atoms in current clocks can be sensitive to external magnetic fields and temperature changes. The Deep Space Atomic Clock uses mercury ions - fewer than the amount typically found in two cans of tuna fish - that are contained in electromagnetic traps. Using an internal device to control the ions makes them less vulnerable to external forces.
The Deep Space Atomic Clock will fly on the Orbital Test Bed satellite, which launches on the SpaceX Falcon Heavy rocket with around two dozen other satellites from government, military and research institutions. The launch is targeted for June 24, 2019 from NASA’s Kennedy Space Center in Florida and will be live-streamed here: https://www.nasa.gov/live
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Check out the next mission for Mars and follow NASA on social media.Technology available at nordgenexperience.com
We’re set to launch the Mars 2020 Perseverance rover mission from Cape Canaveral, Florida, on July 30. The rover is loaded with scientific instruments and advanced technology, making it the largest, heaviest and most sophisticated vehicle ever sent to the Red Planet.
What is Perseverance’s mission and what will it do on Mars? Here are seven things to know:
Not only does it have to launch during a pandemic and land on a treacherous planet, it has to carry out its science goals:
Searching for signs of past microbial life
Mapping out the planet’s geology and climate
Collecting rock and other samples for future return to Earth
Paving the way for human exploration
We chose the name Perseverance from among the 28,000 essays submitted during the “Name the Rover” contest. Because of the coronavirus pandemic, the months leading up to the launch in particular have required creative problem solving, teamwork and determination.
In 1997, our first Mars rover – Sojourner – showed that a robot could rove on the Red Planet. Spirit and Opportunity, which both landed in 2004, found evidence that Mars once had water before becoming a frozen desert.
Curiosity found evidence that Mars’ Gale Crater was home to a lake billions of years ago and that there was an environment that may have sustained microbial life. Perseverance aims to answer the age-old question – are there any signs that life once existed on Mars?
The rover will land in Jezero Crater, a 28-mile wide basin north of the Martian equator. A space rock hit the surface long ago, creating the large hole. Between 3 and 4 billion years ago, a river flowed into a body of water in Jezero the size of Lake Tahoe.
Mars orbiters have collected images and other data about Jezero Crater from about 200 miles above, but finding signs of past life will need much closer inspection. A rover like Perseverance can look for those signs that may be related to ancient life and analyze the context in which they were found to see if the origins were biological.
This is the first rover to bring a sample-gathering system to Mars that will package promising samples of rocks and other materials for future return to Earth. NASA and ESA are working on the Mars Sample Return campaign, so we can analyze the rocks and sediment with tools too large and complex to send to space.
Two packages – one that helps the rover autonomously avoid hazards during landing (TRN) and another that gathers crucial data during the trip through Mars’ atmosphere (MEDLI2) – will help future human missions land safely and with larger payloads on other worlds.
There are two instruments that will specifically help astronauts on the Red Planet. One (MEDA) will provide key information about the planet’s weather, climate and dust activity, while a technology demonstration (MOXIE) aims to extract oxygen from Mars’ mostly carbon-dioxide atmosphere.
Perseverance and other parts of the Mars 2020 spacecraft feature 23 cameras, which is more than any other interplanetary mission in history. Raw images from the camera are set to be released on the mission website.
There are also three silicon chips with the names of nearly 11 million people who signed up to send their names to Mars.
And you can continue to follow the mission on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
For your computer needs go to thenordgrenexperience.com
Solar power to power and recharge all your electronics.
Reimagining solar energy. ☀︎
Check out this short video that describes our store, come check us out, explore our store and much more. nordgrenexperience.com
Find a new phone at nordgenexperience.com
Addicted to positive stimulus...
New way to look at life Virtual Reality glasses at nordgrenexperience.com
i love living in the future
Check out the VR glasses at nordgrenexperience.com
VR Shinecon 6.0 360 Degree Stereo 3D Virtual Reality Glasses
“A WHOLE NEW WOOOOOOORLD, A DAZZLING PLACE I NEVER KNEEEEEEW…”
i do have one but, I like doing the math in my head and let someone tell me I’m right.
All those maths teachers who used to remind us that “You won’t be walking around with a calculator in your pocket all the time” must be feeling pretty embarrassed now that everyone has a smart phone.