NASA also uses symbols for specific projects within the agency. Each space shuttle crew designs a patch that represents what it will do during the mission. Some robotic probes sent to explore space have had mission patches. From the wing of the space shuttle to the top of the NASA homepage, the agency's official insignia is probably its best-known symbol.
The round red, white and blue insignia, nicknamed the "meatball," was designed by employee James Modarelli in 1959, NASA's second year. The design incorporates references to different aspects of the mission of the National Aeronautics and Space Administration. The round shape of the insignia represents a planet. The stars represent space. The red v-shaped vector represents aeronautics. The circular orbit around the agency's name represents space travel.
After it was introduced, the "meatball" was the most common symbol of NASA for 16 years, but in 1975 NASA decided to create a more "modern" logo. That logo, which consisted of the word "NASA" in a unique type style, was nicknamed the "worm." That logo was retired in 1992, and the classic meatball insignia has been the most common agency symbol since.
In addition to the insignia, NASA has another official symbol. If the meatball is the everyday face of NASA, the NASA seal is the dressed-up version. The NASA administrator uses the seal for formal purposes such as award presentations and ceremonies. Like the meatball insignia, the seal also includes planet, stars, orbit and vector elements
NASA also uses symbols for specific projects within the agency. Each space shuttle crew designed a patch that represents what they were going to do during the mission. Some robotic probes sent to explore space have had mission patches.
Image Credits: NASA
This self-portrait of NASA's Curiosity Mars rover shows the vehicle at "Namib Dune," where the rover's activities included scuffing into the dune with a wheel and scooping samples of sand for laboratory analysis.
The scene combines 57 images taken on Jan. 19, 2016, during the 1,228th Martian day, or sol, of Curiosity's work on Mars. The camera used for this is the Mars Hand Lens Imager (MAHLI) at the end of the rover's robotic arm.
Namib Dune is part of the dark-sand "Bagnold Dune Field" along the northwestern flank of Mount Sharp. Images taken from orbit have shown that dunes in the Bagnold field move as much as about 3 feet (1 meter) per Earth year.
The location of Namib Dune is show on a map of Curiosity's route athttp://mars.nasa.gov/msl/multimedia/images/?ImageID=7640. The relationship of Bagnold Dune Field to the lower portion of Mount Sharp is shown in a map at PIA16064.
The view does not include the rover's arm. Wrist motions and turret rotations on the arm allowed MAHLI to acquire the mosaic's component images. The arm was positioned out of the shot in the images, or portions of images, that were used in this mosaic. This process was used previously in acquiring and assembling Curiosity self-portraits taken at sample-collection sites, including "Rocknest" (PIA16468), "Windjana" (PIA18390) and "Buckskin" (PIA19807).
For scale, the rover's wheels are 20 inches (50 centimeters) in diameter and about 16 inches (40 centimeters) wide.
MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover.
More information about Curiosity is online at http://www.nasa.gov/msl andhttp://mars.jpl.nasa.gov/msl/.
Nebula Images: http://nebulaimages.com/
Astronomy articles: http://astronomyisawesome.com/
For only the second time in a year, a NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite captured a view of the moon as it moved in front of the sunlit side of Earth.
The images were captured by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four-megapixel CCD camera and telescope on the DSCOVR satellite orbiting 1 million miles from Earth. From its position between the sun and Earth, DSCOVR conducts its primary mission of real-time solar wind monitoring for the National Oceanic and Atmospheric Administration (NOAA).
The first image is from July 2016 and the second image (moon traveling diagonally Northeast in the image) is from July 2015
Credits: NASA
A test version of the Orion spacecraft is pulled back like a pendulum and released, taking a dive into the 20-foot-deep Hydro Impact Basin at NASA’s Langley Research Center in Hampton, Virginia. Crash-test dummies wearing modified Advanced Crew Escape Suits are securely seated inside the capsule to help engineers understand how splashdown in the ocean during return from a deep-space mission could impact the crew and seats. Each test in the water-impact series simulates different scenarios for Orion’s parachute-assisted landings, wind conditions, velocities and wave heights the spacecraft and crew may experience when landing in the ocean upon return missions in support of the journey to Mars.
One brother is a facts-and-figures guy, the other an adventurer.
They're both deeply fascinated by all things space.
Mikey and Robbie Rouse, 15 and 16, are from Salem, Virginia, and both have Duchenne Muscular Dystrophy, a progressive condition that affects nearly all their voluntary muscles.
On a recent trip to Hampton, Virginia, they visited one of the birthplaces of the American space program — NASA's Langley Research Center.
Mikey, the adventurer, wants to be the first wheelchair astronaut. "And I want to go to Mars," he said during his visit.
Robbie, the facts-and-figures guy, is always thinking of safety first — a quality held sacred by all at NASA.
The brothers' visit to Langley included a tour of the center's hangar, a stop at the Flight Mission Support Center for the ozone-monitoring Stratospheric Aerosol and Gas Experiment III, and presentations on the Hypersonic Inflatable Aerodynamic Decelerator, autonomous technologies, and tests at the Landing and Impact Research Facility.
Deputy Center Director Clayton Turner and Associate Director Cathy Mangum presented Mikey and Robbie with commemorative coins and copies of "A Century at Langley," a pictoral history of the center.
No subject raised during the visit failed to spark the boys' curiosity.
Steve Velotas, associate director for intelligent flight systems, talked with Mikey and Robbie about the ways in which Langley researchers are studying autonmous technologies. Autonomous systems could be used in unmanned aerial vehicles, in-space assembly robots, or even wheelchairs to help those with disabilities navigate more easily.
"I don't trust robots completely," Mikey said.
"We don't either," said Velotas, who then explained that part of the reason Langley scientists are studying autonomous systems is to make sure they work like people want them to.
Evan Horowitz, structures and mechanical systems airworthiness engineer, showed the brothers Langley's historic hangar and talked about some of the past and present missions the facility has supported.
Gemini and Apollo astronauts trained in the hangar's Rendezvous Docking Simulator, and aircraft used for airborne science studies and autonomous flight research are based there.
Mikey and Robbie peppered Horowitz, who often takes tour groups through the hangar, with questions about air pollution and habitable exoplanets.
"This is great," said Horowitz. "Best interaction I've had in months."
The previous day, Mikey and Robbie visited the Virginia Air & Space Center, Langley's official visitors center.
The brothers live with their great-grandmother in Salem and receive daily assistance from a nonprofit called Lutheran Family Services of Virginia. The trip to Hampton was organized by Julie's Abundance Project, a program of Lutheran Family Services of Virginia.
Image Credits: NASA/David C. Bowman
Joe AtkinsonJoe Atkinson NASA Langley Research Center
In June 2015, when the cameras on NASA’s approaching New Horizons spacecraft first spotted the large reddish polar region on Pluto’s largest moon, Charon, mission scientists knew two things: they’d never seen anything like it elsewhere in our solar system, and they couldn’t wait to get the story behind it.
Over the past year, after analyzing the images and other data that New Horizons has sent back from its historic July 2015 flight through the Pluto system, the scientists think they’ve solved the mystery. As they detail this week in the international scientific journal Nature, Charon’s polar coloring comes from Pluto itself – as methane gas that escapes from Pluto’s atmosphere and becomes “trapped” by the moon’s gravity and freezes to the cold, icy surface at Charon’s pole. This is followed by chemical processing by ultraviolet light from the sun that transforms the methane into heavier hydrocarbons and eventually into reddish organic materials called tholins.
"Who would have thought that Pluto is a graffiti artist, spray-painting its companion with a reddish stain that covers an area the size of New Mexico?" asked Will Grundy, a New Horizons co-investigator from Lowell Observatory in Flagstaff, Arizona, and lead author of the paper. "Every time we explore, we find surprises. Nature is amazingly inventive in using the basic laws of physics and chemistry to create spectacular landscapes."
The team combined analyses from detailed Charon images obtained by New Horizons with computer models of how ice evolves on Charon’s poles. Mission scientists had previously speculated that methane from Pluto’s atmosphere was trapped in Charon’s north pole and slowly converted into the reddish material, but had no models to support that theory.
The New Horizons team dug into the data to determine whether conditions on the Texas-sized moon (with a diameter of 753 miles or 1,212 kilometers) could allow the capture and processing of methane gas. The models using Pluto and Charon’s 248-year orbit around the sun show some extreme weather at Charon’s poles, where 100 years of continuous sunlight alternate with another century of continuous darkness. Surface temperatures during these long winters dip to -430 Fahrenheit (-257 Celsius), cold enough to freeze methane gas into a solid.
“The methane molecules bounce around on Charon's surface until they either escape back into space or land on the cold pole, where they freeze solid, forming a thin coating of methane ice that lasts until sunlight comes back in the spring,” Grundy said. But while the methane ice quickly sublimates away, the heavier hydrocarbons created from it remain on the surface.
The models also suggested that in Charon’s springtime the returning sunlight triggers conversion of the frozen methane back into gas. But while the methane ice quickly sublimates away, the heavier hydrocarbons created from this evaporative process remain on the surface.
Sunlight further irradiates those leftovers into reddish material – called tholins – that has slowly accumulated on Charon’s poles over millions of years. New Horizons’ observations of Charon’s other pole, currently in winter darkness – and seen by New Horizons only by light reflecting from Pluto, or “Pluto-shine” – confirmed that the same activity was occurring at both poles.
“This study solves one of the greatest mysteries we found on Charon, Pluto’s giant moon,” said Alan Stern, New Horizons principal investigator from the Southwest Research Institute, and a study co-author. “And it opens up the possibility that other small planets in the Kuiper Belt with moons may create similar, or even more extensive ‘atmospheric transfer’ features on their moons.”
Credits: NASA/JHUAPL/SwRI
Researchers conducted mass property testing of the Orion crew module for the Ascent Abort Test-2 Friday, Feb. 16, at NASA's Langley Research Center in Hampton, Virginia. The crew module, built at Langley, was lifted and rotated on its side to determine its weight and center of gravity, known as balance. To get accurate results during the uncrewed flight test planned for April 2019 at Cape Canaveral Air Force Station in Florida, this simplified crew module needs to have the same outer shape and approximate mass distribution of the Orion crew module that astronauts will fly in on future missions to deep space. The markings on the sides and bottom of the capsule used for the test will allow cameras to follow the spacecraft’s trajectory as well as the orientation of the spacecraft relative to the direction of travel for data collection.
Next, it will be shipped to NASA’s Johnson Space Center in Houston where engineers will outfit it with the avionics, power, software, instrumentation and other elements needed to execute the flight test. This test will help ensure Orion’s launch abort system can carry astronauts to safety in the event of an emergency with its rocket during launch.
Image Credit: NASA/David C. Bowman
It’s incredible what humans can do on and off of our planet. Here is a view from the International Space Station taken by Engineer and NASA Astronaut, Colonel Tim Kopra.
Doha, Bahrain – manmade EarthArt.
February 7, 2016.
Credit: NASA Astronaut Tim Kopra’s Twitter Account
A new map of Mars' gravity made with three NASA spacecraft is the most detailed to date, providing a revealing glimpse into the hidden interior of the Red Planet.
"Gravity maps allow us to see inside a planet, just as a doctor uses an X-ray to see inside a patient," said Antonio Genova of the Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts. "The new gravity map will be helpful for future Mars exploration, because better knowledge of the planet's gravity anomalies helps mission controllers insert spacecraft more precisely into orbit about Mars. Furthermore, the improved resolution of our gravity map will help us understand the still-mysterious formation of specific regions of the planet." Genova, who is affiliated with MIT but is located at NASA's Goddard Space Flight Center in Greenbelt, Maryland, is the lead author of a paper on this research published online March 5 in the journal Icarus.
The improved resolution of the new gravity map suggests a new explanation for how some features formed across the boundary that divides the relatively smooth northern lowlands from heavily cratered southern highlands. Also, the team confirmed that Mars has a liquid outer core of molten rock by analyzing tides in the Martian crust and mantle caused by the gravitational pull of the sun and the two moons of Mars. Finally, by observing how Mars' gravity changed over 11 years – the period of an entire cycle of solar activity -- the team inferred the massive amount of carbon dioxide that freezes out of the atmosphere onto a Martian polar ice cap when it experiences winter. They also observed how that mass moves between the south pole and the north pole with the change of season in each hemisphere.
The map was derived using Doppler and range tracking data collected by NASA's Deep Space Network from three NASA spacecraft in orbit around Mars: Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). Like all planets, Mars is lumpy, which causes the gravitational pull felt by spacecraft in orbit around it to change. For example, the pull will be a bit stronger over a mountain, and slightly weaker over a canyon.
Slight differences in Mars' gravity changed the trajectory of the NASA spacecraft orbiting the planet, which altered the signal being sent from the spacecraft to the Deep Space Network. These small fluctuations in the orbital data were used to build a map of the Martian gravity field.
The gravity field was recovered using about 16 years of data that were continuously collected in orbit around Mars. However, orbital changes from uneven gravity are tiny, and other forces that can perturb the motion of the spacecraft had to be carefully accounted for, such as the force of sunlight on the spacecraft's solar panels and drag from the Red Planet's thin upper atmosphere. It took two years of analysis and computer modeling to remove the motion not caused by gravity.
"With this new map, we've been able to see gravity anomalies as small as about 100 kilometers (about 62 miles) across, and we've determined the crustal thickness of Mars with a resolution of around 120 kilometers (almost 75 miles)," said Genova. "The better resolution of the new map helps interpret how the crust of the planet changed over Mars' history in many regions."
For example, an area of lower gravity between Acidalia Planitia and Tempe Terra was interpreted before as a system of buried channels that delivered water and sediments from Mars' southern highlands into the northern lowlands billions of years ago when the Martian climate was wetter than it is today. The new map reveals that this low gravity anomaly is definitely larger and follows the boundary between the highlands and the lowlands. This system of gravity troughs is unlikely to be only due to buried channels because in places the region is elevated above the surrounding plains. The new gravity map shows that some of these features run perpendicular to the local topography slope, against what would have been the natural downhill flow of water.
An alternative explanation is that this anomaly may be a consequence of a flexure or bending of the lithosphere -- the strong, outermost layer of the planet -- due to the formation of the Tharsis region. Tharsis is a volcanic plateau on Mars thousands of miles across with the largest volcanoes in the solar system. As the Tharsis volcanoes grew, the surrounding lithosphere buckled under their immense weight.
The new gravity field also allowed the team to confirm indications from previous gravity solutions that Mars has a liquid outer core of molten rock. The new gravity solution improved the measurement of the Martian tides, which will be used by geophysicists to improve the model of Mars' interior.
Changes in Martian gravity over time have been previously measured using the MGS and ODY missions to monitor the polar ice caps. For the first time, the team used MRO data to continue monitoring their mass. The team has determined that when one hemisphere experiences winter, approximately 3 trillion to 4 trillion tons of carbon dioxide freezes out of the atmosphere onto the northern and southern polar caps, respectively. This is about 12 to 16 percent of the mass of the entire Martian atmosphere. NASA's Viking missions first observed this massive seasonal precipitation of carbon dioxide. The new observation confirms numerical predictions from the Mars Global Reference Atmospheric Model – 2010.
The research was funded by grants from NASA's Mars Reconnaissance Orbiter mission and NASA's Mars Data Analysis Program.
Bill Steigerwald
Engineers drop a NASA’s Orion Spacecraft test capsule with crash-test dummies inside into 20-foot-deep Hydro Impact Basin to simulate what the spacecraft may experience when splashing down in the Pacific Ocean after deep-space missions.
More: http://www.nasa.gov/feature/langley/nasa-crash-test-dummies-suit-up-for-action