Pan (moon of Saturn) - March 07 2017
NASA/JPL-Caltech/SSI/Kevin M. Gill
From enabling astronauts to practice moon landings to aircraft crash testing to drop tests for Orion, NASA's gantry has come full circle.
The gantry, a 240-foot high, 400-foot-long, 265-foot-wide A-frame steel structure located at Langley Research Center in Hampton, Va., was built in 1963 and was used to model lunar gravity. Originally named the Lunar Landing Research Facility (LLRF), the gantry became operational in 1965 and allowed astronauts like Neil Armstrong and Edwin "Buzz" Aldrin to train for Apollo 11's final 150 feet before landing on the moon.
Because the moon's gravity is only 1/6 as strong as Earth's, the gantry had a suspension system that supported 5/6 of the total weight of the Lunar Excursion Module Simulator (LEMS), the device the astronauts used to perform the tests. This supportive suspension system imitated the moon's gravitational environment. Additionally, many of the tests were conducted at night to recreate lighting conditions on the moon.
Neil Armstrong with the LEMS at the Lunar Landing Research Facility. This picture (below) was taken in February 1969 - just five months before Armstrong would become the first person to set foot on the surface of the moon.
Aircraft Crash Test Research
After the Apollo program concluded, a new purpose emerged for the gantry – aircraft crash testing. In 1972, the gantry was converted into the Impact Dynamics Research Facility (IDRF) and was used to investigate the crashworthiness of General Aviation (GA) aircraft and rotorcraft. The facility performed full-scale crash tests of GA aircraft and helicopters, system qualification tests of Army helicopters, vertical drop tests of Boeing 707 and composite fuselage sections and drop tests of the F-111 crew escape capsule.
The gantry was even used to complete a number of component tests in support of the Mars Sample Return Earth Entry Vehicle.
With features including a bridge and a 72-foot vertical drop tower, the gantry was able to support planes that weighed up to 30,000 pounds. Engineers lifted aircraft as high as 200 feet in the air and released them to determine how well the craft endured the crash. Data from the crash tests were used to define a typical acceleration for survivable crashes as well as to establish impact criteria for aircraft seats. The impact criteria are still used today as the Federal Aviation Administration standard for certification.
In 1985, the structure was named a National Historic Landmark based on its considerable contributions to the Apollo program.
Revitalized Space Mission
The gantry provides engineers and astronauts a means to prepare for Orion's return to Earth from such missions. With its new mission, the gantry also received a new name – the Landing and Impact Research (LandIR) Facility.
Although originally capable of supporting only 30,000 pounds, the new bridge can bear up to 64,000 pounds after the summer 2007 renovations. Other renovations include a new elevator, floor repairs and a parallel winch capability that allows an accurate adjustment of the pitch of the test article. The new parallel winch system increases the ability to accurately control impact pitch and pitching rotational rate. The gantry can also perform pendulum swings from as high as 200 feet with resultant velocities of over 70 miles per hour.
The gantry makes researching for the optimal landing alternative for NASA's first attempted, manned dry landing on Earth possible. Orion's return on land rather than water will facilitate reuse of the capsule. A water landing would make reuse difficult due to the corrosiveness of salt water.
The testing process involves lifting the test article by steel cables to a height between 40 and 60 feet and swinging it back to Earth. Although the airbags appear most promising, the gantry has the capability to perform different kinds of tests, including a retro rocket landing system and a scale-model, water landing test using a four-foot-deep circular pool. So far, three types of tests have been conducted in support of the Orion program, each progressing from the previous to more realistic features.
The first test consisted of dropping a boilerplate test article that was half the diameter of what Orion will be. For the second round of testing, engineers added a welded structure to the top, with a shape more comparable to Orion to examine the article's tendency to flip or remain upright.
Hydro-Impact
The on-going tests for Orion continue with impacts on water. This is to ensure astronaut safety during a return to Earth mission. Similar to the Apollo program, Orion will re-enter Earth’s atmosphere at very high speeds and after slowing down, deploy parachutes to further slow the descent into the ocean. At NASA Langley Research Center, engineers use the hydro-impact research to determine the stresses on the vehicle and examine its behavior during a mock splashdown.
This self-portrait of NASA's Curiosity Mars rover shows the vehicle at "Namib Dune," where the rover's activities included scuffing into the dune with a wheel and scooping samples of sand for laboratory analysis.
The scene combines 57 images taken on Jan. 19, 2016, during the 1,228th Martian day, or sol, of Curiosity's work on Mars. The camera used for this is the Mars Hand Lens Imager (MAHLI) at the end of the rover's robotic arm.
Namib Dune is part of the dark-sand "Bagnold Dune Field" along the northwestern flank of Mount Sharp. Images taken from orbit have shown that dunes in the Bagnold field move as much as about 3 feet (1 meter) per Earth year.
The location of Namib Dune is show on a map of Curiosity's route athttp://mars.nasa.gov/msl/multimedia/images/?ImageID=7640. The relationship of Bagnold Dune Field to the lower portion of Mount Sharp is shown in a map at PIA16064.
The view does not include the rover's arm. Wrist motions and turret rotations on the arm allowed MAHLI to acquire the mosaic's component images. The arm was positioned out of the shot in the images, or portions of images, that were used in this mosaic. This process was used previously in acquiring and assembling Curiosity self-portraits taken at sample-collection sites, including "Rocknest" (PIA16468), "Windjana" (PIA18390) and "Buckskin" (PIA19807).
For scale, the rover's wheels are 20 inches (50 centimeters) in diameter and about 16 inches (40 centimeters) wide.
MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover.
More information about Curiosity is online at http://www.nasa.gov/msl andhttp://mars.jpl.nasa.gov/msl/.
It’s incredible what humans can do on and off of our planet. Here is a view from the International Space Station taken by Engineer and NASA Astronaut, Colonel Tim Kopra.
Doha, Bahrain – manmade EarthArt.
February 7, 2016.
Credit: NASA Astronaut Tim Kopra’s Twitter Account
NASA Langley researchers are experts in modeling and simulations for entry, descent and landing, working on missions since the Viking lander in 1976. In this episode, we explore the challenges of guiding landers like Mars InSight through the Martian atmosphere for a safe landing.
NASA InSight launched on March 5, 2018.
For more, visit https://mars.nasa.gov/insight/
NASA astronaut Suni Williams cannonballs off a Boeing CST-100 Starliner test article after NASA engineers and Air Force pararescuemen climbed aboard the spacecraft to simulate rescuing astronauts in the event of an emergency during launch or ascent.
The Starliner is designed for land-based returns, but simulating rescue operations at NASA’s Langley Research Center’s Hydro Impact Basin in Hampton, Virginia, ensures flight crew and ground support are versed in what to do during a contingency scenario.
For more information about rescue and safety operations, see Commercial Crew: Building in Safety from the Ground Up in a Unique Way.
Credit: NASA/David C. Bowman
Two Hampton Roads high schools will soon have their creations judged by NASA to see if they make it aboard the International Space Station. One is a food recipe for astronauts. The other is hardware for the space station.
Students from Phoebus High School prepare their breakfast dish at HUNCH's Preliminary Culinary Challenge at NASA's Langley Research Center.
Credits: NASA/David C. Bowman
Both projects are part of a NASA program called HUNCH, or High school students United with NASA to Create Hardware.
NASA’s Langley Research Center in Hampton, Virginia, hosted a preliminary culinary challenge March 5, where two schools cooked up a breakfast entrée. The shrimp and grits with gouda cheese dish from Phoebus High School in Hampton made it to the final competition at NASA’s Johnson Space Center in Houston scheduled for April 26.
Their work will be judged by Johnson Food Lab personnel, industry professionals, the space station program office, and astronauts for quality and taste. They’ll also be rated on a research paper and presentation video. The winning entree will be created by the Johnson Space Food Lab and sent up to the space station for astronauts to enjoy.
Space Hardware
Poquoson High School student Travis Redman, left, talks with Glenn Johnson, a design engineer at NASA's Johnson Space Center, about an astronaut boot that would lock in place preventing floating in a no gravity environment.
Credits: NASA/George Homich
Langley also hosted a critical design review March 6, when four schools showed off the real-world products they fabricated to tackle challenges faced by astronauts living in space. The team from Poquoson High School in Poquoson, Virginia, was selected as a finalist and faces a final design and prototyping review April 25 at Johnson.
The hardware includes a pin kit, can squisher, exercise harness, crew reminder tool, location app tool, and hygiene caddy. Many of the hardware projects are items personally requested by space station crew.
The North Carolina School of Science and Mathematics, who also presented their projects at Langley, will join Poquoson High to present their works at Johnson. The projects the team from the Durham-based school had were an augmented reality object identification annotation tool, automatic location stowage system, and a single point exercise harness.
“The HUNCH Program can change the trajectory of a student’s life, by providing various avenues beyond the STEM (science, technology, engineering and math) field and opportunities to participate in the global effort to research in space,” said Yolanda Watford Simmons, manager of Langley’s HUNCH program.
In 2015, a culinary team from Phoebus High won the culinary challenge and their entrée, Jamaican rice and beans with coconut milk, is now included in an astronaut cookbook. Read more on their success here.
For more information on HUNCH, go here.
Eric Gillard NASA Langley Research Center
February 12, 1969 (5 months, 4 days before the launch of the Apollo 11 Spacecraft)
@nasa @nasahistory
NASA centers across the country, including the Langley Research Center in Hampton, Virginia, are opening their doors Monday, Feb. 12, to media and social media for 'State of NASA' events.
Activities include a speech from acting NASA Administrator Robert Lightfoot, and unique opportunities for a behind-the-scenes look at the agency's work. These events follow President Trump's Fiscal Year 2019 budget proposal delivery to the U.S. Congress.
Events at NASA centers will include media tours and presentations on the agency's exploration goals for the Moon, Mars and worlds beyond, the innovative technologies developed and under development, as well as the scientific discoveries made as NASA explores and studies Earth and our universe, and advancements toward next-generation air travel.
Lightfoot will provide a 'State of NASA' address to the agency's workforce at 1 p.m. EST from Marshall Space Flight Center in Huntsville, Alabama. His remarks will air live on NASA Television and the agency's website, https://www.nasa.gov/live. Following the presentation, NASA centers will host tours of their facilities for media and social media guests.
At Langley, the news and social media event will run from 1 to 5 p.m. and include:
A look at the SAGE III flight control center. SAGE III is the Stratospheric Aerosol and Gas Experiment III studying Earth's atmosphere from the International Space Station.
A visit to the research aircraft hangar to see aircraft that are used in support of airborne research campaigns, as well as an inflatable heat shield that will enable landing on distant worlds.
A view of the labs where sonic-boom testing is being done to lower their impact so that commercial aircraft can be developed to fly supersonically over land.
A tour in a lab where inflatable space structures are being developed.
Follow the hashtag #StateOfNASA for more!
By the end of the year, over 70 different models had been tested by facilities at the Air Force's Arnold Engineering Development Center and the NASA Langley, Ames, and Lewis Research Centers.
Here at NASA Langley Research Center, a lot of those tests took place in our 7 X 10-Foot High Speed Tunnel (pictured above).
Some tests also took place in our 20-Foot Vertical Spin Tunnel.
They say you show your true colors when you’re under pressure.
Turns out the old saying works for models being tested in wind tunnels as well, specifically those coated with a unique Pressure-Sensitive Paint (PSP) that NASA engineers have used for more than 25 years.
Read more: https://www.nasa.gov/aero/power-of-pink-provides-nasa-with-pressure-pictures