For Earth Day, we’re inviting you to take a moment to celebrate our wonderful water world, Earth. As far as we know, our Blue Marble is the only place in the universe with life, and that life depends on water. Snap a photo of yourself outside and tag it #GlobalSelfie – bonus points if your selfie features your favorite body of water! http://go.nasa.gov/3xFt0H0
Make sure to follow us on Tumblr for your regular dose of space!
After years of training NASA astronaut Shane Kimbrough is launching to the International Space Station on Wednesday, so there’s not much left to say, right? Wrong! Here are five secrets about his past that the Texas native and retired Army officer hasn’t told us, until now.
1. Shane went to elementary school in Germany
But his family returned to the U.S. where he attended middle and high school.
2. Life is Smyrna, Georgia
Shane attended middle and high school in the Atlanta suburb of Smyrna with movie star Julia Roberts!
3. Shane had an accomplished military career
A retired Army colonel, Shane graduated from West Point, after which he became an Army aviator. He later became a jumpmaster and has had a long and distinguished military career.
Read his bio.
4. He loves sports. All sports!
He LOVES playing, coaching and watching sports. Watching college football is one of the things he’ll miss while he’s on the station.
5. Leading the future
His passion for teaching is one that he finds “most rewarding.”
Follow Shane on the station at @astro_kimbrough.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Sending humans to space, returning to the Moon, transforming aircraft, exploring the extraordinary every day: just a few things you are a part of as a NASA intern. Whether you have dreamed of working at the agency your whole life, or discovered a new interest, students at NASA have the opportunity to make real contributions to space exploration and flight. Want to know more? Here are five ways these internships can be rocket fuel for your career:
Imagine walking into a lab to work side-by-side with NASA scientists, engineers and researchers. As a NASA intern, that’s a daily reality. Mentors are full-time employees who guide and work with students throughout their internship. Space communications intern Nick Sia believes working with a mentor is what makes NASA’s internships different. “Working one-on-one has given me more opportunities to work on different projects,” he says. “It’s the best motivation to do great work.”
As a NASA intern, your work matters. Students are treated as employees, and their ideas are valued. Hands-on assignments allow interns to make real contributions to NASA research and gain experience. For example, Erin Rezich is working in our mobility lab to help design excavation hardware for planetary surfaces such as the Moon. “It’s an incredibly exciting project because these are problems that have to be solved to move planetary exploration forward,” she says.
Not only do interns improve their technical skills, but they are also building communication and leadership skills. This summer, students are taking part in a two-week immersive design challenge. Participants will design a Ram Air Turbine for NASA Glenn’s 1x1 Supersonic Wind Tunnel. “This design challenge is a unique opportunity to create a design from scratch, which could actually be implemented,” says Woodrow Funk, an electrical testing engineer intern. Projects such as this allow students to work independently, plan, organize and improve time management skills.
NASA also offers many opportunities for students pursuing a career outside of STEM fields. Departments such as human resources, administration, education and communications engage students with hands-on projects. These organizations provide support essential to NASA’s programs and missions. “I was excited that NASA offered opportunities that match my skill set,” says Molly Kearns, a digital media student working with Space Communications and Navigation. Kearns’ first summer at NASA confirmed her passion for graphic design. “What makes the experience so rewarding is seeing content that I created published on social media sites,” she says.
Students come to NASA from all over the nation to develop important skills matched to their career goals and expand the way they think about their work. Being surrounded by the best scientists, developers, engineers, mathematicians and communicators is inspiring. NASA’s network is one of graduate fellow Jamesa Stokes’ main motivations. “There are tons of smart and awesome people who work here,” says Stokes, “At the end of the day, they are willing to help anyone who comes and asks for it.”
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The solar system is huge, so let us break it down for you. Here are 5 things you should know this week:
1. Mini-Moons
This week, the robotic spacecraft Cassini will pass a pair of tiny Saturnian moons. Daphnis, only 5.7 miles (9.2 km) across, orbits within the Keeler Gap in Saturn's outer A ring. Daphnis' slight gravity maintains that gap. Cassini will then swing by Telesto, a small moon that shares its orbit with Tethys. Cassini's cameras should get some good pictures of these tiny worlds.
2. Stardust Memories
Jan. 15 is the 10th anniversary of the day the Stardust capsule returned to Earth, carrying pieces of a comet. The Stardust spacecraft passed right through the gas and dust surrounding the icy nucleus of Wild 2 (pronounced "Vilt-2") in January 2004, then sent the samples it collected home for laboratory analysis.
3. Sun Surfing in the 70s
Jan. 15 is the 40th anniversary of the launch of Helios 2, the second of a pair of spacecraft launched by NASA and built by Germany to investigate the sun. Helios 2 flew to within about 27 million miles (44 million km) of the sun's surface in 1976. The spacecraft provided important information on solar plasma, the solar wind, cosmic rays, and cosmic dust, and also performed magnetic field and electrical field experiments. A NASA mission set to launch in 2018 will dare an even closer approach.
4. To Space, to Watch the Seas
Jason 3, an international mission to continue U.S.- European satellite measurements of the topography of the ocean surface, is scheduled to launch on Jan. 17. The mission will make highly detailed measurements of sea-level on Earth to gain insight into ocean circulation and climate change.
5. Getting Serious About Ceres
This is getting good. Over the past few weeks, the Dawn mission has been tantalizing us with ever-closer images of the dwarf planet Ceres, the largest object in the main asteroid belt and a small world in its own right. Now, the robotic spacecraft has used its ion engines to ease down into its lowest mapping orbit in order to scrutinize Ceres up close, and already the pictures are spectacular. Odd mountains, deep craters and fissures—not to mention those famous bright spots—will all be coming into sharper focus during the coming days.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What design steps do you take to make sure that the robot runs smoothly, without anything like sand getting in the gears and wires?
We could talk all day about how our satellite data is crucial for Earth science…tracking ocean currents, monitoring natural disasters, soil mapping – the list goes on and on.
Our satellite data can be used to build businesses and commercial products – but finding and using this data has been a daunting task for many potential users because it’s been stored across dozens of websites.
Until now.
Our Technology Transfer program has just released their solution to make finding data easier, called The NASA Remote Sensing Toolkit (RST).
RST offers an all-in-one approach to finding and using our Earth Science data, the tools needed to analyze it, and software to build your own tools.
Before, we had our petabytes on petabytes of information spread out across dozens of websites – not to mention the various software tools needed to interpret the data.
Now, RST helps users find everything they need while having only one browser open.
Feeling inspired to innovate with our data? Here are just a few examples of how other companies have taken satellite data and turned it into products, known as NASA spinoffs, that are helping our planet today.
1. Bringing Landscape into Focus
We have a number of imaging systems for locating fires, but none were capable of identifying small fires or indicating the flames’ intensity. Thanks to a series of Small Business Innovation Research (SBIR) contracts between our Ames Research Center and Xiomas Technologies LLC, the Wide Area Imager aerial scanner does just that. While we and the U.S. Forest Service use it for fire detection, the tool is also being used by municipalities for detailed aerial surveillance projects.
2. Monitoring the Nation’s Forests with the Help of Our Satellites
Have you ever thought about the long-term effects of natural disasters, such as hurricanes, on forest life? How about the big-time damage caused by little pests, like webworms?
Our Stennis Space Center did, along with multiple forest services and environmental threat assessment centers. They partnered to create an early warning system to identify, characterize, and track disturbances from potential forest threats using our satellite data. The result was ForWarn, which is now being used by federal and state forest and natural resource managers.
3. Informing Forecasts of Crop Growth
Want to hear a corny story?
Every year Stennis teams up with the U.S. Department of Agriculture to host a program called Ag 20/20 to utilize remote sensing technology for operational use in agricultural crop management practices at the level of individual farms. During Ag 20/20 in 2000, an engineering contractor developed models for using our satellite data to predict corn crop yield. The model was eventually sold to Genscape Inc., which has commercialized it as LandViewer. Sold under a subscription model, LandViewer software provides predictions of corn production to ethanol plants and grain traders.
4. Water Mapping Technology Rebuilds Lives in Arid Regions
No joking around here. Lives depend on the ability to find precious water in areas with little of it.
Using our Landsat satellite and other topographical data, Radar Technologies International developed an algorithm-based software program that can locate underground water sources. Working with international organizations and governments, the firm is helping to provide water for refugees and other people in drought-stricken regions such as Kenya, Sudan, and Afghanistan.
5. Satellite Maps Deliver More Realistic Gaming
Are you more of the creative type? This last entry used satellite data to help people really get into their gameplay.
When Electronic Arts (EA) decided to make SSX, a snowboarding video game, it faced challenges in creating realistic-looking mountains. The solution was our ASTER Global Digital Elevation Map, made available by our Jet Propulsion Laboratory, which EA used to create 28 real-life mountains from 9 different ranges for its award-winning game.
You can browse our Remote Sensing Toolkit at technology.nasa.gov.
Want to know more about future tutorial webinars on RST?
Follow our Technology Transfer Program on twitter @NASAsolutions for the latest updates.
Want to learn more about the products made by NASA technologies? Head over to spinoff.nasa.gov.
Sign up to receive updates about upcoming tutorials HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
This just in: 2022 effectively tied for the fifth warmest year since 1880, when our record starts. Here at NASA, we work with our partners at NOAA to track temperatures across Earth’s entire surface, to keep a global record of how our planet is changing.
Overall, Earth is getting hotter.
The warming comes directly from human activities – specifically, the release of greenhouse gases like carbon dioxide from burning fossil fuels. We started burning fossil fuels in earnest during the Industrial Revolution. Activities like driving cars and operating factories continue to release greenhouse gases into our atmosphere, where they trap heat in the atmosphere.
So…if we’re causing Earth to warm, why isn’t every year the hottest year on record?
As 2022 shows, the current global warming isn’t uniform. Every single year isn’t necessarily warmer than every previous year, but it is generally warmer than most of the preceding years. There’s a warming trend.
Earth is a really complex system, with various climate patterns, solar activity, and events like volcanic eruptions that can tip things slightly warmer or cooler.
While 2021 and 2022 continued a global trend of warming, they were both a little cooler than 2020, largely because of a natural phenomenon known as La Niña.
La Niña is one third of a climate phenomenon called El Niño Southern Oscillation, also known as ENSO, which can have significant effects around the globe. During La Niña years, ocean temperatures in the central and eastern Pacific Ocean cool off slightly. La Niña’s twin, El Niño brings warmer temperatures to the central and eastern Pacific. Neutral years bring ocean temperatures in the region closer to the average.
El Niño and La Niña affect more than ocean temperatures – they can bring changes to rainfall patterns, hurricane frequency, and global average temperature.
We’ve been in a La Niña mode the last three, which has slightly cooled global temperatures. That’s one big reason 2021 and 2022 were cooler than 2020 – which was an El Niño year.
Overall warming is still happening. Current El Niño years are warmer than previous El Niño years, and the same goes for La Niña years. In fact, enough overall warming has occurred that most current La Niña years are warmer than most previous El Niño years. This year was the warmest La Niña year on record.
Our Sun cycles through periods of more and less activity, on a schedule of about every 11 years. Here on Earth, we might receive slightly less energy — heat — from the Sun during quieter periods and slightly more during active periods.
At NASA, we work with NOAA to track the solar cycle. We kicked off a new one – Solar Cycle 25 – after solar minimum in December 2019. Since then, solar activity has been slightly ramping up.
Because we closely track solar activity, we know that over the past several decades, solar activity hasn't been on the rise, while greenhouse gases have. More importantly, the "fingerprints" we see on the climate, including temperature changes in the upper atmosphere, don't fit the what we'd expect from solar-caused warming. Rather they look like what we expect from increased greenhouse warming, verifying a prediction made decades ago by NASA.
Throughout history, volcanoes have driven major shifts in Earth’s climate. Large eruptions can release water vapor — a greenhouse gas like carbon dioxide — which traps additional warmth within our atmosphere.
On the flip side, eruptions that loft lots of ash and soot into the atmosphere can temporarily cool the climate slightly, by reflecting some sunlight back into space.
Like solar activity, we can monitor volcanic eruptions and tease out their effect on variations in our global temperature.
Our satellites, airborne missions, and measurements from the ground give us a comprehensive picture of what’s happening on Earth every day. We also have computer models that can skillfully recreate Earth’s climate.
By combining the two, we can see what would happen to global temperature if all the changes were caused by natural forces, like volcanic eruptions or ENSO. By looking at the fingerprints each of these climate drivers leave in our models, it’s perfectly clear: The current global warming we’re experiencing is caused by humans.
For more information about climate change, visit climate.nasa.gov.
Make sure to follow us on Tumblr for your regular dose of space!
On June 19, engineers on the ground remotely operated the International Space Station’s robotic arm to remove the Roll-Out Solar Array (ROSA) from the trunk of SpaceX’s Dragon cargo vehicle. Here, you see the experimental solar array unfurl as the station orbits Earth.
Solar panels are an efficient way to power satellites, but they are delicate and large, and must be unfolded when a satellite arrives in orbit. The Roll-Out Solar Array (ROSA) is a new type of solar panel that rolls open in space like a party favor and is more compact than current rigid panel designs.
ROSA is 20% lighter and 4x smaller in volume than rigid panel arrays!
This experiment remained attached to the robotic arm over seven days to test the effectiveness of the advanced, flexible solar array that rolls out like a tape measure. During that time, they also measured power produced by the array and monitored how the technology handled retraction.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What type of planning goes into ensuring a successful launch, and how easily is it decided?
Today is Small Business Saturday, which the U.S. Small Business Administration (SBA) recognizes as a day to celebrate and support small businesses and all they do for their communities.
Source: Techshot
We are proud to partner with small businesses across the country through NASA’s Small Business Innovative Research (SBIR) and Small Business Technology Transfer (STTR) programs, which have funded the research, development and demonstration of innovative space technologies since 1982. This year, we’ve awarded 571 SBIR/STTR contracts totaling nearly $180 million to companies who will support our future exploration:
Techshot, Inc. was selected to bioprint micro-organs in a zero-gravity environment for research and testing of organs-on-chip devices, which simulate the physiological functions of body organs at a miniature scale for health research without the need for expensive tests or live subjects.
CertainTech, Inc., with the George Washington University, will demonstrate an improved water recovery system for restoring nontoxic water from wastewater using nanotechnology.
Electrochem, Inc. was contracted to create a compact and lightweight regenerative fuel cell system that can store energy from an electrolyzer during the lunar day to be used for operations during the lunar night.
Source: Electrochem
Small businesses are also developing technologies for the Artemis missions to the Moon and for human and robotic exploration of Mars. As we prepare to land the first woman and next man on the Moon by 2024, these are just a few of the small businesses working with us to make it happen.
Masten Space Systems, Astrobotic and Tyvak Nano-Satellite Systems are three NASA SBIR/STTR alumni now eligible to bid on NASA delivery services to the lunar surface through Commercial Lunar Payload Services (CLPS) contracts. Other small businesses selected as CLPS providers include Ceres Robotics, Deep Space Systems, Intuitive Machines, Moon Express, and Orbit Beyond. Under the Artemis program, these companies could land robotic missions on the Moon to perform science experiments, test technologies and demonstrate capabilities to help the human exploration that will follow. The first delivery could be as early as July 2021.
One cornerstone of our return to the Moon is a small spaceship called Gateway that will orbit our nearest neighbor to provide more access to the lunar surface. SBIR/STTR alum Advanced Space Systems will develop a CubeSat that will test out the lunar orbit planned for Gateway, demonstrating how to enter into and operate in the unique orbit. The Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment (CAPSTONE) could launch as early as December 2020.
We selected 14 companies as part of our Tipping Point solicitation, which fosters the development of critical, industry-led space capabilities for our future missions. These small businesses all proposed unique technologies that could benefit the Artemis program.
Many of these small businesses are also NASA SBIR/STTR alumni whose Tipping Point awards are related to their SBIR or STTR awards. For example, Infinity Fuel Cell and Hydrogen, Inc. (Infinity Fuel) will develop a power and energy product that could be used for lunar rovers, surface equipment, and habitats. This technology stems from a new type of fuel cell that Infinity Fuel developed with the help of NASA SBIR/STTR awards.
CU Aerospace and Astrobotic are also small businesses whose Tipping Point award can be traced back to technology developed through the NASA SBIR/STTR program. CU Aerospace will build a CubeSat with two different propulsion systems, which will offer high performance at a low cost, and Astrobotic will develop small rover “scouts” that can host payloads and interface with landers on the lunar surface.
This is just a handful of the small businesses supporting our journey back to the Moon and on to Mars, and just a taste of how they impact the economy and American innovation. We are grateful for the contributions that small businesses make—though they be but “small,” they are fierce.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Commercial Crew Program has worked with several American aerospace industry companies to facilitate the development of U.S. human spaceflight systems since 2010. The goal is to have safe, reliable and cost-effective access to and from the International Space Station and foster commercial access to other potential low-Earth orbit destinations.
We selected Boeing and SpaceX in September 2014 to transport crew to the International Space Station from the United States. These integrated spacecraft, rockets and associated systems will carry up to four astronauts on NASA missions, maintaining a space station crew of seven to maximize time dedicated to scientific research on the orbiting laboratory
We begin a new era of human spaceflight as American astronauts will once again launch on an American spacecraft and rocket from American soil to the International Space Station.
As part of our Commercial Crew Program, NASA astronauts Robert Behnken and Douglas Hurley will fly on SpaceX’s Crew Dragon spacecraft for an extended stay at the space station for the Demo-2 mission. Launch is scheduled for 4:33 p.m. EDT on Wednesday, May 27.
Demo-2 will be SpaceX’s final test flight to validate its crew transportation system, including the Crew Dragon spacecraft, Falcon 9 rocket, launch pad and operations capabilities. While docked to the space station, the crew will run tests to ensure the Crew Dragon is capable of remaining connected to the station for up to 210 days on future missions.
Our Commercial Crew Program is working with the American aerospace industry as companies develop and operate a new generation of spacecraft and launch systems capable of carrying crews to low-Earth orbit and the International Space Station. Commercial transportation to and from the station will provide expanded utility, additional research time and broader opportunities for discovery on the orbiting laboratory.
The station is a critical testbed for us to understand and overcome the challenges of long-duration spaceflight. As commercial companies focus on providing human transportation services to and from low-Earth orbit, we are freed up to focus on building spacecraft and rockets for deep space missions.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts