Today is Small Business Saturday, which the U.S. Small Business Administration (SBA) recognizes as a day to celebrate and support small businesses and all they do for their communities.
Source: Techshot
We are proud to partner with small businesses across the country through NASA’s Small Business Innovative Research (SBIR) and Small Business Technology Transfer (STTR) programs, which have funded the research, development and demonstration of innovative space technologies since 1982. This year, we’ve awarded 571 SBIR/STTR contracts totaling nearly $180 million to companies who will support our future exploration:
Techshot, Inc. was selected to bioprint micro-organs in a zero-gravity environment for research and testing of organs-on-chip devices, which simulate the physiological functions of body organs at a miniature scale for health research without the need for expensive tests or live subjects.
CertainTech, Inc., with the George Washington University, will demonstrate an improved water recovery system for restoring nontoxic water from wastewater using nanotechnology.
Electrochem, Inc. was contracted to create a compact and lightweight regenerative fuel cell system that can store energy from an electrolyzer during the lunar day to be used for operations during the lunar night.
Source: Electrochem
Small businesses are also developing technologies for the Artemis missions to the Moon and for human and robotic exploration of Mars. As we prepare to land the first woman and next man on the Moon by 2024, these are just a few of the small businesses working with us to make it happen.
Masten Space Systems, Astrobotic and Tyvak Nano-Satellite Systems are three NASA SBIR/STTR alumni now eligible to bid on NASA delivery services to the lunar surface through Commercial Lunar Payload Services (CLPS) contracts. Other small businesses selected as CLPS providers include Ceres Robotics, Deep Space Systems, Intuitive Machines, Moon Express, and Orbit Beyond. Under the Artemis program, these companies could land robotic missions on the Moon to perform science experiments, test technologies and demonstrate capabilities to help the human exploration that will follow. The first delivery could be as early as July 2021.
One cornerstone of our return to the Moon is a small spaceship called Gateway that will orbit our nearest neighbor to provide more access to the lunar surface. SBIR/STTR alum Advanced Space Systems will develop a CubeSat that will test out the lunar orbit planned for Gateway, demonstrating how to enter into and operate in the unique orbit. The Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment (CAPSTONE) could launch as early as December 2020.
We selected 14 companies as part of our Tipping Point solicitation, which fosters the development of critical, industry-led space capabilities for our future missions. These small businesses all proposed unique technologies that could benefit the Artemis program.
Many of these small businesses are also NASA SBIR/STTR alumni whose Tipping Point awards are related to their SBIR or STTR awards. For example, Infinity Fuel Cell and Hydrogen, Inc. (Infinity Fuel) will develop a power and energy product that could be used for lunar rovers, surface equipment, and habitats. This technology stems from a new type of fuel cell that Infinity Fuel developed with the help of NASA SBIR/STTR awards.
CU Aerospace and Astrobotic are also small businesses whose Tipping Point award can be traced back to technology developed through the NASA SBIR/STTR program. CU Aerospace will build a CubeSat with two different propulsion systems, which will offer high performance at a low cost, and Astrobotic will develop small rover “scouts” that can host payloads and interface with landers on the lunar surface.
This is just a handful of the small businesses supporting our journey back to the Moon and on to Mars, and just a taste of how they impact the economy and American innovation. We are grateful for the contributions that small businesses make—though they be but “small,” they are fierce.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
When Neil Armstrong took his first steps on the Moon 50 years ago, he famously said “that’s one small step for a man, one giant leap for mankind.” He was referring to the historic milestone of exploring beyond our own planet — but there’s also another way to think about that giant leap: the massive effort to develop technologies to safely reach, walk on the Moon and return home led to countless innovations that have improved life on Earth.
Armstrong took one small step on the lunar surface, but the Moon landing led to a giant leap forward in innovations for humanity.
Here are five examples of technology developed for the Apollo program that we’re still using today:
As soon as we started planning to send astronauts into space, we faced the problem of what to feed them — and how to ensure the food was safe to eat. Can you imagine getting food poisoning on a spacecraft, hundreds of thousands of miles from home?
We teamed up with a familiar name in food production: the Pillsbury Company. The company soon realized that existing quality control methods were lacking. There was no way to be certain, without extensive testing that destroyed the sample, that the food was free of bacteria and toxins.
Pillsbury revamped its entire food-safety process, creating what became the Hazard Analysis and Critical Control Point system. Its aim was to prevent food safety problems from occurring, rather than catch them after the fact. They managed this by analyzing and controlling every link in the chain, from the raw materials to the processing equipment to the people handling the food.
Today, this is one of the space program’s most far-reaching spinoffs. Beyond keeping the astronaut food supply safe, the Hazard Analysis and Critical Point system has also been adopted around the world — and likely reduced the risk of bacteria and toxins in your local grocery store.
The Apollo spacecraft was revolutionary for many reasons. Did you know it was the first vehicle to be controlled by a digital computer? Instead of pushrods and cables that pilots manually adjusted to manipulate the spacecraft, Apollo’s computer sent signals to actuators at the flick of a switch.
Besides being physically lighter and less cumbersome, the switch to a digital control system enabled storing large quantities of data and programming maneuvers with complex software.
Before Apollo, there were no digital computers to control airplanes either. Working together with the Navy and Draper Laboratory, we adapted the Apollo digital flight computer to work on airplanes. Today, whatever airline you might be flying, the pilot is controlling it digitally, based on the technology first developed for the flight to the Moon.
A shock absorber descended from Apollo-era dampers and computers saves lives by stabilizing buildings during earthquakes.
Apollo’s Saturn V rockets had to stay connected to the fueling tubes on the launchpad up to the very last second. That presented a challenge: how to safely move those tubes out of the way once liftoff began. Given how fast they were moving, how could we ensure they wouldn’t bounce back and smash into the vehicle?
We contracted with Taylor Devices, Inc. to develop dampers to cushion the shock, forcing the company to push conventional shock isolation technology to the limit.
Shortly after, we went back to the company for a hydraulics-based high-speed computer. For that challenge, the company came up with fluidic dampers—filled with compressible fluid—that worked even better. We later applied the same technology on the Space Shuttle’s launchpad.
The company has since adapted these fluidic dampers for buildings and bridges to help them survive earthquakes. Today, they are successfully protecting structures in some of the most quake-prone areas of the world, including Tokyo, San Francisco and Taiwan.
We’ve all seen runners draped in silvery “space blankets” at the end of marathons, but did you know the material, called radiant barrier insulation, was actually created for space?
Temperatures outside of Earth’s atmosphere can fluctuate widely, from hundreds of degrees below to hundreds above zero. To better protect our astronauts, during the Apollo program we invented a new kind of effective, lightweight insulation.
We developed a method of coating mylar with a thin layer of vaporized metal particles. The resulting material had the look and weight of thin cellophane packaging, but was extremely reflective—and pound-for-pound, better than anything else available.
Today the material is still used to protect astronauts, as well as sensitive electronics, in nearly all of our missions. But it has also found countless uses on the ground, from space blankets for athletes to energy-saving insulation for buildings. It also protects essential components of MRI machines used in medicine and much, much more.
Image courtesy of the U.S. Marines
Patients in hospitals are hooked up to sensors that send important health data to the nurse’s station and beyond — which means when an alarm goes off, the right people come running to help.
This technology saves lives every day. But before it reached the ICU, it was invented for something even more extraordinary: sending health data from space down to Earth.
When the Apollo astronauts flew to the Moon, they were hooked up to a system of sensors that sent real-time information on their blood pressure, body temperature, heart rate and more to a team on the ground.
The system was developed for us by Spacelabs Healthcare, which quickly adapted it for hospital monitoring. The company now has telemetric monitoring equipment in nearly every hospital around the world, and it is expanding further, so at-risk patients and their doctors can keep track of their health even outside the hospital.
Only a few people have ever walked on the Moon, but the benefits of the Apollo program for the rest of us continue to ripple widely.
In the years since, we have continued to create innovations that have saved lives, helped the environment, and advanced all kinds of technology.
Now we’re going forward to the Moon with the Artemis program and on to Mars — and building ever more cutting-edge technologies to get us there. As with the many spinoffs from the Apollo era, these innovations will transform our lives for generations to come.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
On July 20, 1969, the world watched as Apollo 11 astronauts Neil Armstrong and Buzz Aldrin took their first steps on the Moon. It was a historic moment for the United States and for humanity. Until then, no human had ever walked on another world. To achieve this remarkable feat, we recruited the best and brightest scientists, engineers and mathematicians across the country. At the peak of our Apollo program, an estimated 400,000 Americans of diverse race and ethnicity worked to realize President John F. Kennedy’s vision of landing humans on the Moon and bringing them safely back to Earth. The men and women of our Ames Research Center in California’s Silicon Valley supported the Apollo program in numerous ways – from devising the shape of the Apollo space capsule to performing tests on its thermal protection system and study of the Moon rocks and soils collected by the astronauts. In celebration of the upcoming 50th anniversary of the Apollo 11 Moon landing, here are portraits of some of the people who worked at Ames in the 1960s to help make the Apollo program a success.
Hank Cole did research on the design of the Saturn V rocket, which propelled humans to the Moon. An engineer, his work at Ames often took him to Edwards Air Force Base in Southern California, where he met Neil Armstrong and other pilots who tested experimental aircraft.
Caye Johnson came to Ames in 1964. A biologist, she analyzed samples taken by Apollo astronauts from the Moon for signs of life. Although no life was found in these samples, the methodology paved the way for later work in astrobiology and the search for life on Mars.
Richard Kurkowski started work at Ames in 1955, when the center was still part of the National Advisory Committee on Aeronautics, NASA’s predecessor. An engineer, he performed wind tunnel tests on aircraft prior to his work on the Apollo program.
Mike Green started at Ames in 1965 as a computer programmer. He supported aerospace engineers working on the development of the thermal protection system for the Apollo command module. The programs were executed on some of earliest large-scale computers available at that time.
Gerhard Hahne played an important role in certifying that the Apollo spacecraft heat shield used to bring our astronauts home from the Moon would not fail. The Apollo command module was the first crewed spacecraft designed to enter the atmosphere of Earth at lunar-return velocity – approximately 24,000 mph, or more than 30 times faster than the speed of sound.
Jim Arnold arrived at Ames in 1962 and was hired to work on studying the aerothermodynamics of the Apollo spacecraft. He was amazed by the image captured by Apollo 8 astronaut Bill Anders from lunar orbit on Christmas Eve in 1968 of Earth rising from beneath the Moon’s horizon. The stunning picture would later become known as the iconic Earthrise photo.
Howard Goldstein came to Ames in 1967. An engineer, he tested materials used for the Apollo capsule heat shield, which protected the three-man crew against the blistering heat of reentry into Earth’s atmosphere on the return trip from the Moon.
Richard Johnson developed a simple instrument to analyze the total organic carbon content of the soil samples collected by Apollo astronauts from the Moon’s surface. He and his wife Caye Johnson, who is also a scientist, were at our Lunar Receiving Laboratory in Houston when the Apollo 11 astronauts returned to Earth so they could examine the samples immediately upon their arrival.
William Borucki joined Ames in 1962. He collected data on the radiation environment of the Apollo heat shield in a facility used to simulate the reentry of the Apollo spacecraft into Earth’s atmosphere.
Join us in celebrating the 50th anniversary of the Apollo 11 Moon landing and hear about our future plans to go forward to the Moon and on to Mars by tuning in to a special two-hour live NASA Television broadcast at 1 pm ET on July 19. Watch the program at www.nasa.gov/live.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Former NASA astronaut and Girl Scout alumna Jan Davis eating Girl Scout Cookies inside the shuttle Endeavour on Sept. 12, 1992. Image credit: NASA
Leadership, service, being prepared and doing your best – these qualities are exemplified by our astronauts, but are also shared by the Girl Scouts! Our astronaut corps has many scout alumnae, and over the years they’ve been breaking barriers and making names for themselves at NASA.
March 12, 2021 marks the 109th birthday of Girl Scouts in the United States, which has been inspiring generations of girls through leadership and STEM (science, technology, engineering and mathematics) activities to empower the explorers of today and tomorrow. To celebrate, we’re highlighting some of our Girl Scout alumnae over the years!
NASA astronaut and Girl Scout alumna Sunita Williams, who served as an International Space Station commander and spent 322 days in space during two spaceflight expeditions.
From left: Susan Helms, the first female International Space Station crew member; Eileen Collins, the first woman to pilot and command a space shuttle; and Dr. Kathy Sullivan, the first American woman to perform a spacewalk.
Former Girl Scouts flew on more than one-third of the space shuttle missions and were pioneering forces as women began making their mark on human spaceflight. The first female crew member to serve on the International Space Station, the first to pilot and command a space shuttle and the first American woman to spacewalk were all Scout alumnae.
NASA astronaut Christina Koch smiles for a selfie while completing tasks during a spacewalk outside the International Space Station.
Koch went on to seal her name in the record books by surpassing Peggy Whitson’s record for the longest single spaceflight in history by a woman!
Understanding how the human body adjusts to things like weightlessness, radiation and bone-density loss is crucial as we look forward to embarking on long-duration spaceflights to the Moon and Mars. Thanks to former astronaut Scott Kelly’s Year in Space mission, we’ve been able to observe these changes on a biological male. Now, thanks to Christina’s mission, we are able to observe these changes on a biological female.
From left: NASA astronauts Jessica Watkins, Loral O’Hara and Kayla Barron
On January 10, 2020 we welcomed 11 new astronauts to our ranks – including three Girl Scout alumnae! As part of the first-ever class of astronauts under our Artemis lunar exploration program, Kayla Barron, Jessica Watkins and Loral O’Hara are now qualified for assignments including long-duration missions to the International Space Station, the Moon and Mars.
Q: A question from the Girl Scouts: What inspires you?
A: “Being a part of an awesome team has always been what inspires me. Whether it’s your Girl Scout troop, a sports team, your class – I think for me always the people around me who push me to succeed and support me when I make mistakes and help me become my best self is what inspires me to show up and do my best.” - NASA astronaut Kayla Barron
Q: How has being a Girl Scout helped you in becoming an astronaut?
A: “Being in the Girl Scouts when I was younger was really cool because, well, first it was just a group of my friends who got to do a lot of different things together. But it really gave us the opportunity to be exposed to a lot of different areas. Like we’d get to go camping. We’d get to ride horses and learn all of these different skills, and so that variety of skill set I think is very applicable to being an astronaut.” - NASA astronaut Loral O’Hara
Q: What would your advice be for the next generation of Girl Scout astronauts?
A: “My advice would be to find something that you’re passionate about. Ideally something in the STEM fields: Science, Technology, Engineering or Mathematics, and to pursue that thing that you’re interested in. Pursue that passion, whatever it is. And don’t give up on your dreams, and continue to follow them until you arrive where you want to be.” - NASA astronaut Jessica Watkins
To all the Girl Scouts out there, keep reaching for the stars because the sky is no longer the limit!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
How did your launch abort affect your future space flights?
You may have seen the famous blue marble or pale blue dot images showing Earth from 18,000 and 3.7 billion miles away, respectively. But closer to home — some 300 miles above Earth's surface — you might encounter an unfamiliar sight: vibrant swaths of red and green or purple and yellow light emanating from the upper atmosphere.
This light is airglow.
Airglow is created when atoms and molecules in the upper atmosphere, excited by sunlight, emit light to shed excess energy. Or, it can happen when atoms and molecules that have been ionized by sunlight collide with and capture a free electron. In both cases, these atmospheric particles emit light in order to relax again. The process is similar to how auroras are created, but while auroras are driven by high-energy solar wind, airglow is energized by day-to-day solar radiation.
Since sunlight is constant, airglow constantly shines throughout Earth’s atmosphere, and the result is a tenuous bubble of light that closely encases our planet. Its light is too dim to see easily except in orbit or on the ground with clear, dark skies and a sensitive camera — it’s one-tenth as bright as the light given off by all the stars in the night sky.
Airglow highlights a key part of our atmosphere: the ionosphere. Stretching from roughly 50 to 400 miles above Earth’s surface, the ionosphere is an electrified layer of the upper atmosphere generated by extreme ultraviolet radiation from the Sun. It reacts to both terrestrial weather below and solar energy streaming in from above, forming a complex space weather system. Turbulence in this ever-changing sea of charged particles can manifest as disruptions that interfere with Earth-orbiting satellites or communication and navigation signals.
Understanding the ionosphere’s extreme variability is tricky because it requires untangling interactions between the different factors at play — interactions of which we don’t have a clear picture. That’s where airglow comes in. Each atmospheric gas has its own favored airglow color, hangs out at a different height and creates airglow by a different process, so we can use airglow to study different layers of the atmosphere.
Airglow carries information on the upper atmosphere’s temperature, density, and composition, but it also helps us trace how particles move through the region itself. Vast, high-altitude winds sweep through the ionosphere, pushing its contents around the globe — and airglow’s subtle dance follows their lead, highlighting global patterns.
Two NASA missions take advantage of precisely this effect to study the upper atmosphere: ICON — short for Ionospheric Connection Explorer — and GOLD — Global-scale Observations of the Limb and Disk.
ICON focuses on how charged and neutral gases in the upper atmosphere behave and interact, while GOLD observes what drives change — the Sun, Earth’s magnetic field or the lower atmosphere — in the region.
By imaging airglow, the two missions will enable scientists to tease out how space and Earth’s weather intersect, dictating the region’s complex behavior.
Keep up with the latest in NASA's airglow and upper atmosphere research on Twitter and Facebook or at nasa.gov/sunearth.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Can you hear this exoplanet screaming? As the exoplanet known as HD 80606 b approaches its star from an extreme, elliptical orbit, it suffers star-grazing torture that causes howling, supersonic winds and shockwave storms across this world beyond our solar system. Its torturous journey boils its atmosphere to a hellish 2,000 degrees Fahrenheit every 111 days, roasting both its light and dark sides. HD 80606b will never escape this scorching nightmare. Download this free poster in English and Spanish and check out the full Galaxy of Horrors.
Make sure to follow us on Tumblr for your regular dose of space!
Hi Serena, what made you think, yes, I want to be an astronaut? And what's your favourite aquatic animal?
Science fiction sometimes makes it seem like it’s possible to live in a black hole. What is the truth behind this?
Who among us doesn’t covertly read tabloid headlines when we pass them by? But if you’re really looking for a dramatic story, you might want to redirect your attention from Hollywood’s stars to the real thing. From birth to death, these burning spheres of gas experience some of the most extreme conditions our cosmos has to offer.
All stars are born in clouds of dust and gas like the Pillars of Creation in the Eagle Nebula pictured below. In these stellar nurseries, clumps of gas form, pulling in more and more mass as time passes. As they grow, these clumps start to spin and heat up. Once they get heavy and hot enough (like, 27 million degrees Fahrenheit or 15 million degrees Celsius), nuclear fusion starts in their cores. This process occurs when protons, the nuclei of hydrogen atoms, squish together to form helium nuclei. This releases a lot of energy, which heats the star and pushes against the force of its gravity. A star is born.
Credit: NASA, ESA and the Hubble Heritage Team (STScI/AURA)
From then on, stars’ life cycles depend on how much mass they have. Scientists typically divide them into two broad categories: low-mass and high-mass stars. (Technically, there’s an intermediate-mass category, but we’ll stick with these two to keep it straightforward!)
A low-mass star has a mass eight times the Sun's or less and can burn steadily for billions of years. As it reaches the end of its life, its core runs out of hydrogen to convert into helium. Because the energy produced by fusion is the only force fighting gravity’s tendency to pull matter together, the core starts to collapse. But squeezing the core also increases its temperature and pressure, so much so that its helium starts to fuse into carbon, which also releases energy. The core rebounds a little, but the star’s atmosphere expands a lot, eventually turning into a red giant star and destroying any nearby planets. (Don’t worry, though, this is several billion years away for our Sun!)
Red giants become unstable and begin pulsating, periodically inflating and ejecting some of their atmospheres. Eventually, all of the star’s outer layers blow away, creating an expanding cloud of dust and gas misleadingly called a planetary nebula. (There are no planets involved.)
Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)
All that’s left of the star is its core, now called a white dwarf, a roughly Earth-sized stellar cinder that gradually cools over billions of years. If you could scoop up a teaspoon of its material, it would weigh more than a pickup truck. (Scientists recently found a potential planet closely orbiting a white dwarf. It somehow managed to survive the star’s chaotic, destructive history!)
A high-mass star has a mass eight times the Sun’s or more and may only live for millions of years. (Rigel, a blue supergiant in the constellation Orion, pictured below, is 18 times the Sun’s mass.)
Credit: Rogelio Bernal Andreo
A high-mass star starts out doing the same things as a low-mass star, but it doesn’t stop at fusing helium into carbon. When the core runs out of helium, it shrinks, heats up, and starts converting its carbon into neon, which releases energy. Later, the core fuses the neon it produced into oxygen. Then, as the neon runs out, the core converts oxygen into silicon. Finally, this silicon fuses into iron. These processes produce energy that keeps the core from collapsing, but each new fuel buys it less and less time. By the point silicon fuses into iron, the star runs out of fuel in a matter of days. The next step would be fusing iron into some heavier element, but doing requires energy instead of releasing it.
The star’s iron core collapses until forces between the nuclei push the brakes, and then it rebounds back to its original size. This change creates a shock wave that travels through the star’s outer layers. The result is a huge explosion called a supernova.
What’s left behind depends on the star’s initial mass. Remember, a high-mass star is anything with a mass more than eight times the Sun’s — which is a huge range! A star on the lower end of this spectrum leaves behind a city-size, superdense neutron star. (Some of these weird objects can spin faster than blender blades and have powerful magnetic fields. A teaspoon of their material would weigh as much as a mountain.)
At even higher masses, the star’s core turns into a black hole, one of the most bizarre cosmic objects out there. Black holes have such strong gravity that light can’t escape them. If you tried to get a teaspoon of material to weigh, you wouldn’t get it back once it crossed the event horizon — unless it could travel faster than the speed of light, and we don’t know of anything that can! (We’re a long way from visiting a black hole, but if you ever find yourself near one, there are some important safety considerations you should keep in mind.)
The explosion also leaves behind a cloud of debris called a supernova remnant. These and planetary nebulae from low-mass stars are the sources of many of the elements we find on Earth. Their dust and gas will one day become a part of other stars, starting the whole process over again.
That’s a very brief summary of the lives, times, and deaths of stars. (Remember, there’s that whole intermediate-mass category we glossed over!) To keep up with the most recent stellar news, follow NASA Universe on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
In temperatures that drop below -20 degrees Fahrenheit, along a route occasionally blocked by wind-driven ice dunes, a hundred miles from any other people, a team led by two of our scientists are surveying an unexplored stretch of Antarctic ice.
They’ve packed extreme cold-weather gear and scientific instruments onto sleds pulled by two tank-like snow machines called PistenBullys, and after a stop at the South Pole Station (seen in this image), they began a two- to three-week traverse.
The 470-mile expedition in one of the most barren landscapes on Earth will ultimately provide the best assessment of the accuracy of data collected from space by the Ice Cloud and land Elevation Satellite-2 (ICESat-2), set to launch in 2018.
This traverse provides an extremely challenging way to assess the accuracy of the data. ICESat-2’s datasets are going to tell us incredible things about how Earth’s ice is changing, and what that means for things like sea level rise.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts