how much (or are you at all) treated differently for being a women in your field? I know it’s a different experience for everyone and I just wanted to hear your perspective
Thanks to new technology, we can take a 360-degree tour of the 1997 Pathfinder mission landing site, including Sojourner, the first Mars rover. Check out this interactive YouTube panorama, and then…
…keep scrolling to find out more about each point of interest, how the Pathfinder mission compares to “The Martian” and NASA’s real Journey to Mars.
Yogi
“Yogi” is a meter-size rock about 5 meters northwest of the Mars Pathfinder lander and the second rock visited by the Sojourner Rover’s alpha proton X-ray spectrometer (APXS) instrument. This mosaic shows super resolution techniques applied to help to address questions about the texture of this rock and what it might tell us about how it came to be.
Twin Peaks
The Twin Peaks are modest-size hills to the southwest of the Mars Pathfinder landing site. They were discovered on the first panoramas taken by the IMP camera on the July 4, 1997, and subsequently identified in Viking Orbiter images taken over 20 years ago. They’re about 30-35 meters tall.
Barnacle Bill
“Barnacle Bill” is a small rock immediately west-northwest of the Mars Pathfinder lander and was the first rock visited by the Sojourner Rover’s alpha proton X-ray spectrometer (APXS) instrument. If you have some old-school red-cyan glasses, put them on and see this pic in eye-popping 3-D.
Rock Garden
The Rock Garden is a cluster of large, angular rocks tilted in a downstream direction from ancient floods on Mars. The rocky surface is comprised of materials washed down from the highlands and deposited in this ancient outflow channel.
MOAR INFO
Pathfinder Lander & Sojourner Rover
Mission Facts [PDF]
Science Results
Rock & Soil Types
This vista was stitched together from many images taken in 1997 by Pathfinder.
Pathfinder and Sojourner figure into Mark Watney’s quest for survival on the Red Planet in the book and movie, “The Martian.” See JPL’s role in making “The Martian” a reality: http://go.nasa.gov/1McRrXw and discover nine real NASA technologies depicted in “The Martian”: http://go.nasa.gov/1QiyUiC.
So what about the real-life “Journey to Mars”? NASA is developing the capabilities needed to send humans to Mars in the 2030s. Discover more at http://nasa.gov/journeytomars and don’t forget to visit me when you make it to the Red Planet. Until then, stay curious and I’ll see you online.
When we think of our globe from a distance, we generally visualize two colors: blue and green. Water and land. Mostly water, consequently, our planet’s nickname of the blue marble.
Traveling around the globe every 90 minutes covering millions of miles with a focused lens on our beautiful planet from 250 miles above, I’ve captured many beautiful colors beyond blue and green that showcase Earth in new and interesting ways. Some colors are indicative of nature like desert sands and weather like snow. Other colors tell stories of Earth’s climate in bright splashes of yellows and greens of pollen and muted grey tones and clouded filters of pollution.
Blue and green still remain vivid and beautiful colors on Earth from the vantage point of the International Space Station, but here are some other colors that have caught my eye from my orbital perspective.
African violet
Bahamas blues
Tropical in Africa
Yellow desert
Orange in Egypt
Red surprise
Snow white
Follow my Year In Space on Twitter, Facebook and Instagram!
Before my question I would like to congratulate you on your career at Nasa, it must be amazing to work there even if you didn’t achieve your dream of being an astronaut, you can still lead missions from the ground. (Sorry if my punctuation is a bit off) as for my question, what has it been like to work at nasa all of these years and get to help with so many missions? Do you ever get nervous for the people who’s lives are in your hands? Signed ~ Phillip
Is earth doing fine, I'm afraid of all the bad stuff that's happening. I just wanna know if it's doing okay (◍•﹏•)
Our Space Launch System (SLS) is an advanced launch vehicle for exploration beyond Earth’s orbit into deep space. SLS, the world’s most powerful rocket, will launch astronauts in our Orion spacecraft on missions to an asteroid and eventually to Mars!
A launch system required to carry humans faster and farther than ever before will need a powerful engine, aka the RS-25 engine. This engine makes a modern race car or jet engine look like a wind-up toy. With the ability to produce 512,000 pounds of trust, the RS-25 engine will produce 10% more thrust than the Saturn V rockets that launched astronauts on journeys to the moon!
Another consideration for using these engines for future spaceflight was that 16 of them already existed from the shuttle program. Using a high-performance engine that already existed gave us a considerable boost in developing its next rocket for space exploration.
Once ready, four RS-25 engines will power the core stage of our SLS into deep space and Mars.
Icy Hearts: A heart-shaped calving front of a glacier in Greenland (left) and Pluto's frozen plains (right). Credits: NASA/Maria-Jose Viñas and NASA/APL/SwRI
From deep below the soil at Earth’s polar regions to Pluto’s frozen heart, ice exists all over the solar system...and beyond. From right here on our home planet to moons and planets millions of miles away, we’re exploring ice and watching how it changes. Here’s 10 things to know:
An Antarctic ice sheet. Credit: NASA
Ice sheets are massive expanses of ice that stay frozen from year to year and cover more than 6 million square miles. On Earth, ice sheets extend across most of Greenland and Antarctica. These two ice sheets contain more than 99 percent of the planet’s freshwater ice. However, our ice sheets are sensitive to the changing climate.
Data from our GRACE satellites show that the land ice sheets in both Antarctica and Greenland have been losing mass since at least 2002, and the speed at which they’re losing mass is accelerating.
Earth’s polar oceans are covered by stretches of ice that freezes and melts with the seasons and moves with the wind and ocean currents. During the autumn and winter, the sea ice grows until it reaches an annual maximum extent, and then melts back to an annual minimum at the end of summer. Sea ice plays a crucial role in regulating climate – it’s much more reflective than the dark ocean water, reflecting up to 70 percent of sunlight back into space; in contrast, the ocean reflects only about 7 percent of the sunlight that reaches it. Sea ice also acts like an insulating blanket on top of the polar oceans, keeping the polar wintertime oceans warm and the atmosphere cool.
Some Arctic sea ice has survived multiple years of summer melt, but our research indicates there’s less and less of this older ice each year. The maximum and minimum extents are shrinking, too. Summertime sea ice in the Arctic Ocean now routinely covers about 30-40 percent less area than it did in the late 1970s, when near-continuous satellite observations began. These changes in sea ice conditions enhance the rate of warming in the Arctic, already in progress as more sunlight is absorbed by the ocean and more heat is put into the atmosphere from the ocean, all of which may ultimately affect global weather patterns.
Snow extends the cryosphere from the poles and into more temperate regions.
Snow and ice cover most of Earth’s polar regions throughout the year, but the coverage at lower latitudes depends on the season and elevation. High-elevation landscapes such as the Tibetan Plateau and the Andes and Rocky Mountains maintain some snow cover almost year-round. In the Northern Hemisphere, snow cover is more variable and extensive than in the Southern Hemisphere.
Snow cover the most reflective surface on Earth and works like sea ice to help cool our climate. As it melts with the seasons, it provides drinking water to communities around the planet.
Tundra polygons on Alaska's North Slope. As permafrost thaws, this area is likely to be a source of atmospheric carbon before 2100. Credit: NASA/JPL-Caltech/Charles Miller
Permafrost is soil that stays frozen solid for at least two years in a row. It occurs in the Arctic, Antarctic and high in the mountains, even in some tropical latitudes. The Arctic’s frozen layer of soil can extend more than 200 feet below the surface. It acts like cold storage for dead organic matter – plants and animals.
In parts of the Arctic, permafrost is thawing, which makes the ground wobbly and unstable and can also release those organic materials from their icy storage. As the permafrost thaws, tiny microbes in the soil wake back up and begin digesting these newly accessible organic materials, releasing carbon dioxide and methane, two greenhouse gases, into the atmosphere.
Two campaigns, CARVE and ABoVE, study Arctic permafrost and its potential effects on the climate as it thaws.
Did you know glaciers are constantly moving? The masses of ice act like slow-motion rivers, flowing under their own weight. Glaciers are formed by falling snow that accumulates over time and the slow, steady creep of flowing ice. About 10 percent of land area on Earth is covered with glacial ice, in Greenland, Antarctica and high in mountain ranges; glaciers store much of the world's freshwater.
Our satellites and airplanes have a bird’s eye view of these glaciers and have watched the ice thin and their flows accelerate, dumping more freshwater ice into the ocean, raising sea level.
The nitrogen ice glaciers on Pluto appear to carry an intriguing cargo: numerous, isolated hills that may be fragments of water ice from Pluto's surrounding uplands. NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Pluto’s most famous feature – that heart! – is stone cold. First spotted by our New Horizons spacecraft in 2015, the heart’s western lobe, officially named Sputnik Planitia, is a deep basin containing three kinds of ices – frozen nitrogen, methane and carbon monoxide.
Models of Pluto’s temperatures show that, due the dwarf planet’s extreme tilt (119 degrees compared to Earth’s 23 degrees), over the course of its 248-year orbit, the latitudes near 30 degrees north and south are the coldest places – far colder than the poles. Ice would have naturally formed around these latitudes, including at the center of Sputnik Planitia.
New Horizons also saw strange ice formations resembling giant knife blades. This “bladed terrain” contains structures as tall as skyscrapers and made almost entirely of methane ice, likely formed as erosion wore away their surfaces, leaving dramatic crests and sharp divides. Similar structures can be found in high-altitude snowfields along Earth’s equator, though on a very different scale.
This image, combining data from two instruments aboard our Mars Global Surveyor, depicts an orbital view of the north polar region of Mars. Credit: NASA/JPL-Caltech/MSSS
Mars has bright polar caps of ice easily visible from telescopes on Earth. A seasonal cover of carbon dioxide ice and snow advances and retreats over the poles during the Martian year, much like snow cover on Earth.
This animation shows a side-by-side comparison of CO2 ice at the north (left) and south (right) Martian poles over the course of a typical year (two Earth years). This simulation isn't based on photos; instead, the data used to create it came from two infrared instruments capable of studying the poles even when they're in complete darkness. This data were collected by our Mars Reconnaissance Orbiter, and Mars Global Surveyor. Credit: NASA/JPL-Caltech
During summertime in the planet's north, the remaining northern polar cap is all water ice; the southern cap is water ice as well, but remains covered by a relatively thin layer of carbon dioxide ice even in summertime.
Scientists using radar data from our Mars Reconnaissance Orbiter found a record of the most recent Martian ice age in the planet's north polar ice cap. Research indicates a glacial period ended there about 400,000 years ago. Understanding seasonal ice behavior on Mars helps scientists refine models of the Red Planet's past and future climate.
Wispy fingers of bright, icy material reach tens of thousands of kilometers outward from Saturn's moon Enceladus into the E ring, while the moon's active south polar jets continue to fire away. Credit: NASA/JPL/Space Science Institute
Saturn’s rings and many of its moons are composed of mostly water ice – and one of its moons is actually creating a ring. Enceladus, an icy Saturnian moon, is covered in “tiger stripes.” These long cracks at Enceladus’ South Pole are venting its liquid ocean into space and creating a cloud of fine ice particles over the moon's South Pole. Those particles, in turn, form Saturn’s E ring, which spans from about 75,000 miles (120,000 kilometers) to about 260,000 miles (420,000 kilometers) above Saturn's equator. Our Cassini spacecraft discovered this venting process and took high-resolution images of the system.
Jets of icy particles burst from Saturn’s moon Enceladus in this brief movie sequence of four images taken on Nov. 27, 2005. Credit: NASA/JPL/Space Science Institute
View of a small region of the thin, disrupted, ice crust in the Conamara region of Jupiter's moon Europa showing the interplay of surface color with ice structures. Credit: NASA/JPL/University of Arizona
The icy surface of Jupiter’s moon Europa is crisscrossed by long fractures. During its flybys of Europa, our Galileo spacecraft observed icy domes and ridges, as well as disrupted terrain including crustal plates that are thought to have broken apart and "rafted" into new positions. An ocean with an estimated depth of 40 to 100 miles (60 to 150 kilometers) is believed to lie below that 10- to 15-mile-thick (15 to 25 km) shell of ice.
The rafts, strange pits and domes suggest that Europa’s surface ice could be slowly turning over due to heat from below. Our Europa Clipper mission, targeted to launch in 2022, will conduct detailed reconnaissance of Europa to see whether the icy moon could harbor conditions suitable for life.
The image shows the distribution of surface ice at the Moon’s south pole (left) and north pole (right), detected by our Moon Mineralogy Mapper instrument. Credit: NASA
In the darkest and coldest parts of our Moon, scientists directly observed definitive evidence of water ice. These ice deposits are patchy and could be ancient. Most of the water ice lies inside the shadows of craters near the poles, where the warmest temperatures never reach above -250 degrees Fahrenheit. Because of the very small tilt of the Moon’s rotation axis, sunlight never reaches these regions.
A team of scientists used data from a our instrument on India’s Chandrayaan-1 spacecraft to identify specific signatures that definitively prove the water ice. The Moon Mineralogy Mapper not only picked up the reflective properties we’d expect from ice, but was able to directly measure the distinctive way its molecules absorb infrared light, so it can differentiate between liquid water or vapor and solid ice.
With enough ice sitting at the surface – within the top few millimeters – water would possibly be accessible as a resource for future expeditions to explore and even stay on the Moon, and potentially easier to access than the water detected beneath the Moon’s surface.
With an estimated temperature of just 50K, OGLE-2005-BLG-390L b is the chilliest exoplanet yet discovered. Pictured here is an artist's concept. Credit: NASA
OGLE-2005-BLG-390Lb, the icy exoplanet otherwise known as Hoth, orbits a star more than 20,000 light years away and close to the center of our Milky Way galaxy. It’s locked in the deepest of deep freezes, with a surface temperature estimated at minus 364 degrees Fahrenheit (minus 220 Celsius)!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Our Psyche mission to a metal world, which will explore a giant metal asteroid known as 16 Psyche, is getting a new, earlier launch date. Psyche is now expected to launch from the Kennedy Space Center in 2022, cruise through the solar system for 4.6 years, and arrive at the Psyche asteroid in 2026, four years earlier than planned.
Psyche is the name of the NASA space mission and the name of the unique metal asteroid orbiting the sun between Mars and Jupiter. The asteroid was discovered in 1852 by Italian astronomer Annibale de Gasparis and named after the Greek mythological figure Psyche, whom Cupid fell in love with. "Psyche" in Greek also means "soul."
The Psyche Mission was selected for flight earlier this year under NASA's Discovery Program. And it will take a village to pull off: The spacecraft is being built by Space Systems Loral in Palo Alto, California; the mission is led by Arizona State University; and NASA's Jet Propulsion Laboratory will be responsible for mission management, operations and navigation.
For the very first time, this mission will let us examine a world made not of rock and ice, but metal. Scientists think Psyche is comprised mostly of metallic iron and nickel, similar to Earth's core - which means Psyche could be an exposed core of an early planet as large as Mars.
Psyche the asteroid is officially known as 16 Psyche, since it was the 16th asteroid to be discovered. It lies within the asteroid belt, is irregularly shaped, about the size of Massachusetts, and is about three times farther away from the sun than Earth.
The Psyche mission will observe the asteroid for 20 months. Scientists hope to discover whether Psyche is the core of an early planet, how old it is, whether it formed in similar ways to Earth's core, and what its surface is like. The mission will also help scientists understand how planets and other bodies separated into their layers including cores, mantles and crusts early in their histories. "Psyche is the only known object of its kind in the solar system and this is the only way humans will ever visit a core," said Principal Investigator Lindy Elkins-Tanton of Arizona State University.
The mission launch and arrival were moved up because Psyche's mission design team were able to plot a more efficient trajectory that no longer calls for an Earth gravity assist, ultimately shortening the cruise time. The new trajectory also stays farther from the sun, reducing the amount of heat protection needed for the spacecraft, and will still include a Mars flyby in 2023.
The Psyche spacecraft will be decked out with a multispectral imager, gamma ray and neutron spectrometer, magnetometer, and X-band gravity science investigation. More: https://sese.asu.edu/research/psyche
In order to support the new mission trajectory, the solar array system was redesigned from a four-panel array in a straight row on either side of the spacecraft to a more powerful five-panel x-shaped design, commonly used for missions requiring more capability. Much like a sports car, combining a relatively small spacecraft body with a very high-power solar array design means the Psyche spacecraft will be able to speed to its destination much faster. Check out this artist's-concept illustration here: https://www.nasa.gov/image-feature/artists-concept-of-psyche-spacecraft-with-five-panel-array
Watch the planned Psyche mission in action.
Our missions to asteroids began with the orbiter NEAR of asteroid Eros, which arrived in 2000, and continues with Dawn, which orbited Vesta and is now in an extended mission at Ceres. The mission OSIRIS-REx, which launched on Sept. 8, 2016, is speeding toward a 2018 rendezvous with the asteroid Bennu, and will deliver a sample back to Earth in 2023. The Lucy mission is scheduled to launch in October 2021 and will explore six Jupiter Trojan asteroids. More: https://www.jpl.nasa.gov/news/news.php?feature=6713
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
From people and pets to pens and pencils, everything gives off energy in the form of heat. We’ve got special instruments that measure thermal wavelengths, so we can tell whether something is hot, cold or in between. Hotter things emit more thermal energy; colder ones emit less.
We have special instruments in space, zipping around Earth and measuring the hottest and coldest places on our planet.
We can also measure much subtler changes in heat – like when plants cool down as they take up water from the soil and ‘sweat’ it out into the air, in a process called evapotranspiration.
This lets us identify healthy, growing crops around the world.
The instrument that can do all this is called the Thermal Infrared Sensor 2 (TIRS-2). It just passed a series of rigorous tests at our Goddard Space Flight Center in Greenbelt, Md., proving it’s ready to survive in space.
TIRS-2 is bound for the Landsat 9 satellite, which will continue decades of work studying our planet from space.
Learn more about TIRS-2 and how we see heat from space: https://www.nasa.gov/feature/goddard/2019/new-landsat-infrared-instrument-ships-from-nasa/.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Phytoplankton. Have you ever heard of them? At NASA, these tiny organisms are kind of a big deal.
Biodiversity in the ocean is a delicate, but essential balance for life on Earth. One way NASA studies this balance is by observing phytoplankton – microalgae that contain chlorophyll, require light to grow, and form the base of the marine food chain.
Phytoplankton even have an essential role in an upcoming NASA mission.
This mission is called PACE- "Plankton, Aerosol, Cloud, ocean Ecosystem.” It will reveal interactions between the ocean and atmosphere, including how they exchange carbon dioxide and how atmospheric aerosols might fuel phytoplankton growth in the surface ocean.
Here are four areas main areas the mission will focus on as part of #WorldOceansMonth.
The word “bloom” sounds pretty, but harmful algal blooms (HABs) are anything but.
When an ocean region is rich in nutrients – think of it as adding fertilizer to the ocean - phytoplankton such as cyanobacteria multiply much faster than usual. This is called a “bloom.”
Some blooms are smelly and ugly but harmless. Others, like HABs, release toxins into the water that can make fish, shellfish, turtles and even humans very sick.
NASA’s PACE mission will help track phytoplankton growth and ocean health to make sure all of us stay healthy, balanced and blooming. In a good way.
What do phytoplankton and clouds have in common? More than you might think.
PACE will also study aerosols, which are any particles or droplets suspended in our atmosphere. Humans create aerosols, like soot or car exhaust, but some phytoplankton release aerosols too.
For example, dust – also an aerosol – can blow into the ocean, depositing iron that helps phytoplankton grow. These phytoplankton then release dimethyl sulfide, a gas that turns into an aerosol, which can influence how clouds form.
Whether the aerosols in our atmosphere come from the ocean or land, it’s important to know how they are impacting our environment. PACE will help clear up some of our questions about what is in our air.
A healthy ocean supports healthy industries and economies, contributes to a healthy atmosphere and helps keep plants, animals and humans healthy and happy. One key to a healthy, balanced ocean is lots of biodiversity.
Biodiversity means having a wide variety of plant and animal species in an ecosystem. It’s important to have many different species of phytoplankton, because each species plays a different role in processing carbon, providing food for tiny animals, and keeping the ocean healthy.
PACE will track the size and movements of phytoplankton populations from space to help our seas stay diverse and bountiful.
One simple reason for tracking the ocean’s health is that fish eat tiny animals that eat phytoplankton, and people eat fish.
Fisheries and aquaculture support about 12 percent of jobs around the world, including employing more than 3 million people in the United States. By better understanding our ocean’s health and how it might change in the future, we can make predictions about impacts to our economies and food supply.
To learn more about phytoplankton, visit our website.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
May the fifth be with you because history is about to be made: As early as May 5, 2018, we’re set to launch Mars InSight, the very first mission to study the deep interior of Mars. We’ve been roaming the surface of Mars for a while now, but when InSight lands on Nov. 26, 2018, we’re going in for a deeper look. Below, 10 things to know as we head to the heart of Mars.
Coverage of prelaunch and launch activities begins Thursday, May 3, on NASA Television and our homepage.
"Insight" is to see the inner nature of something, and the InSight lander—a.k.a. Interior Exploration using Seismic Investigations, Geodesy and Heat Transport—will do just that. InSight will take the "vital signs" of Mars: its pulse (seismology), temperature (heat flow) and reflexes (radio science). It will be the first thorough check-up since the planet formed 4.5 billion years ago.
You read that right: earthquakes, except on Mars. Scientists have seen a lot of evidence suggesting Mars has quakes, and InSight will try to detect marsquakes for the first time. By studying how seismic waves pass through the different layers of the planet (the crust, mantle and core), scientists can deduce the depths of these layers and what they're made of. In this way, seismology is like taking an X-ray of the interior of Mars.
Want to know more? Check out this one-minute video.
InSight is a Mars mission, but it’s also so much more than that. By studying the deep interior of Mars, we hope to learn how other rocky planets form. Earth and Mars were molded from the same primordial stuff more than 4.5 billion years ago, but then became quite different. Why didn’t they share the same fate? When it comes to rocky planets, we’ve only studied one in great detail: Earth. By comparing Earth's interior to that of Mars, InSight's team hopes to better understand our solar system. What they learn might even aid the search for Earth-like planets outside our solar system, narrowing down which ones might be able to support life.
InSight looks a bit like an oversized crane game: When it lands on Mars this November, its robotic arm will be used to grasp and move objects on another planet for the first time. And like any crane game, practice makes it easier to capture the prize.
Want to see what a Mars robot test lab is like? Take a 360 tour.
InSight will be traveling with a number of instruments, from cameras and antennas to the heat flow probe. Get up close and personal with each one in our instrument profiles.
InSight has three major parts that make up the spacecraft: Cruise Stage; Entry, Descent, and Landing System; and the Lander. Find out what each one does here.
Mars has weak sunlight because of its long distance from the Sun and a dusty, thin atmosphere. So InSight’s fan-like solar panels were specially designed to power InSight in this environment for at least one Martian year, or two Earth years.
Our scientists have found evidence that Mars’ crust is not as dense as previously thought, a clue that could help researchers better understand the Red Planet’s interior structure and evolution. “The crust is the end-result of everything that happened during a planet’s history, so a lower density could have important implications about Mars’ formation and evolution,” said Sander Goossens of our Goddard Space Flight Center in Greenbelt, Maryland.
InSight won’t be flying solo—it will have two microchips on board inscribed with more than 2.4 million names submitted by the public. "It's a fun way for the public to feel personally invested in the mission," said Bruce Banerdt of our Jet Propulsion Laboratory, the mission's principal investigator. "We're happy to have them along for the ride."
The rocket that will loft InSight beyond Earth will also launch a separate NASA technology experiment: two mini-spacecraft called Mars Cube One, or MarCO. These suitcase-sized CubeSats will fly on their own path to Mars behindInSight. Their goal is to test new miniaturized deep space communication equipment and, if the MarCOs make it to Mars, may relay back InSight data as it enters the Martian atmosphere and lands. This will be a first test of miniaturized CubeSat technology at another planet, which researchers hope can offer new capabilities to future missions.
Check out the full version of ‘Solar System: 10 Thing to Know This Week’ HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts