Earth’s Hot And It’s Cold 🎶(and We Can Tell From Space)

Earth’s Hot and It’s Cold 🎶(and We Can Tell from Space)

From people and pets to pens and pencils, everything gives off energy in the form of heat. We’ve got special instruments that measure thermal wavelengths, so we can tell whether something is hot, cold or in between. Hotter things emit more thermal energy; colder ones emit less.

image

We have special instruments in space, zipping around Earth and measuring the hottest and coldest places on our planet.

image

We can also measure much subtler changes in heat – like when plants cool down as they take up water from the soil and ‘sweat’ it out into the air, in a process called evapotranspiration.

image

This lets us identify healthy, growing crops around the world.

image

The instrument that can do all this is called the Thermal Infrared Sensor 2 (TIRS-2). It just passed a series of rigorous tests at our Goddard Space Flight Center in Greenbelt, Md., proving it’s ready to survive in space.

image

TIRS-2 is bound for the Landsat 9 satellite, which will continue decades of work studying our planet from space.

image

 Learn more about TIRS-2 and how we see heat from space: https://www.nasa.gov/feature/goddard/2019/new-landsat-infrared-instrument-ships-from-nasa/.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Nasa and Others

5 years ago

Protecting our Home Planet 🌎

image

Did you ever wonder how we spots asteroids that may be getting too close to Earth for comfort? Wonder no more. Our Planetary Defense Coordination Office does just that. Thanks to a variety of ground and space based telescopes, we’re able to detect potentially hazardous objects so we can prepare for the unlikely threat against our planet. 

What is a near-Earth object?

image

Near-Earth objects (NEOs) are asteroids and comets that orbit the Sun, but their orbits bring them into Earth’s neighborhood – within 30 million miles of Earth’s orbit.

These objects are relatively unchanged remnant debris from the solar system’s formation some 4.6 billion years ago. Most of the rocky asteroids originally formed in the warmer inner solar system between the orbits of Mars and Jupiter, while comets, composed mostly of water ice with embedded dust particles, formed in the cold outer solar system.

Who searches for near-Earth objects?

image

Our Near-Earth Object (NEO) Observations Program finds, tracks and monitors near-Earth asteroids and comets. Astronomers supported by the program use telescopes to follow up the discoveries to make additional measurements, as do many observatories all over the world. The Center for Near-Earth Object Studies, based at our Jet Propulsion Laboratory, also uses these data to calculate high-precision orbits for all known near-Earth objects and predict future close approaches by them to Earth, as well as the potential for any future impacts.

How do we calculate the orbit of a near-Earth object?

image

Scientists determine the orbit of an asteroid by comparing measurements of its position as it moves across the sky to the predictions of a computer model of its orbit around the Sun. The more observations that are used and the longer the period over which those observations are made, the more accurate the calculated orbit and the predictions that can be made from it.

How many near-Earth objects have been discovered so far?

image

At the start of 2019, the number of discovered NEOs totaled more than 19,000, and it has since surpassed 20,000. An average of 30 new discoveries are added each week. More than 95 percent of these objects were discovered by NASA-funded surveys since 1998, when we initially established its NEO Observations Program and began tracking and cataloguing them.

Currently the risk of an asteroid striking Earth is exceedingly low, but we are constantly monitoring our cosmic neighborhood. Have more questions? Visit our Planetary Defense page to explore how we keep track of near-Earth objects. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
2 years ago

Why Do X-Ray Mirrors Look So Unusual?

Completed quadrant of an X-ray Mirror Assembly, under development for the JAXA/NASA XRISM mission. It is shaped like a fan with thin metal struts holding it together.

Does the object in this image look like a mirror? Maybe not, but that’s exactly what it is! To be more precise, it’s a set of mirrors that will be used on an X-ray telescope. But why does it look nothing like the mirrors you’re familiar with? To answer that, let’s first take a step back. Let’s talk telescopes.

How does a telescope work?

The basic function of a telescope is to gather and focus light to amplify the light’s source. Astronomers have used telescopes for centuries, and there are a few different designs. Today, most telescopes use curved mirrors that magnify and focus light from distant objects onto your eye, a camera, or some other instrument. The mirrors can be made from a variety of materials, including glass or metal.

Diagram showing a reflecting telescope with a pair of mirrors to focus the light on the detector — in this case, an observer’s eye. The diagram shows the “flow” of light, which starts at a distant galaxy, enters the telescope and bounces off the primary mirror at the bottom of the telescope. Then the light moves to the secondary mirror which redirects the light out of the side of the telescope tube into the observer’s eye.

Space telescopes like the James Webb and Hubble Space Telescopes use large mirrors to focus light from some of the most distant objects in the sky. However, the mirrors must be tailored for the type and range of light the telescope is going to capture—and X-rays are especially hard to catch.

X-rays versus mirrors

X-rays tend to zip through most things. This is because X-rays have much smaller wavelengths than most other types of light. In fact, X-rays can be smaller than a single atom of almost every element. When an X-ray encounters some surfaces, it can pass right between the atoms!

X-ray image of a human elbow. Denser materials, like bone, stop more X-rays than skin and muscle.

Doctors use this property of X-rays to take pictures of what’s inside you. They use a beam of X-rays that mostly passes through skin and muscle but is largely blocked by denser materials, like bone. The shadow of what was blocked shows up on the film.

This tendency to pass through things includes most mirrors. If you shoot a beam of X-rays into a standard telescope, most of the light would go right through or be absorbed. The X-rays wouldn’t be focused by the mirror, and we wouldn’t be able to study them.

Animation first showing a plane of balls face-on and an arrow passing through the space between the balls. Then the angle changes to show the balls edge-on and an arrow bouncing off the top.

X-rays can bounce off a specially designed mirror, one turned on its side so that the incoming X-rays arrive almost parallel to the surface and glance off it. At this shallow angle, the space between atoms in the mirror's surface shrinks so much that X-rays can't sneak through. The light bounces off the mirror like a stone skipping on water. This type of mirror is called a grazing incidence mirror.

A metallic onion

Telescope mirrors curve so that all of the incoming light comes to the same place. Mirrors for most telescopes are based on the same 3D shape — a paraboloid. You might remember the parabola from your math classes as the cup-shaped curve. A paraboloid is a 3D version of that, spinning it around the axis, a little like the nose cone of a rocket. This turns out to be a great shape for focusing light at a point.

A line drawing of a parabola - a cup-shaped curve, shown here on its side - spins around to create a 3D shape. The word “paraboloid” shows on the screen. Then part of the curve fades away, leaving behind two things:  a small concave circle, which was one end of the paraboloid, labeled “Radio dishes; optical, infrared and ultraviolet telescope mirrors,” and a cylinder with sloping walls, which was the part of the edges of the paraboloid, labeled “X-ray mirrors.”

Mirrors for visible and infrared light and dishes for radio light use the “cup” portion of that paraboloid. For X-ray astronomy, we cut it a little differently to use the wall. Same shape, different piece. The mirrors for visible, infrared, ultraviolet, and radio telescopes look like a gently-curving cup. The X-ray mirror looks like a cylinder with very slightly angled walls.

The image below shows how different the mirrors look. On the left is one of the Chandra X-ray Observatory’s cylindrical mirrors. On the right you can see the gently curved round primary mirror for the Stratospheric Observatory for Infrared Astronomy telescope.

On the left, a technician stands next to a cylinder-shaped mirror designed for X-ray astronomy. The mirror is held in a frame a little off the ground, and is about as tall as the technician. On the right, two technicians inspect a round mirror for optical astronomy.

If we use just one grazing incidence mirror in an X-ray telescope, there would be a big hole, as shown above (left). We’d miss a lot of X-rays! Instead, our mirror makers fill in that cylinder with layers and layers of mirrors, like an onion. Then we can collect more of the X-rays that enter the telescope, giving us more light to study.

Completed X-ray Mirror Assembly for the X-ray Imaging and Spectroscopy Mission (XRISM, pronounced “crism”), which is a collaboration between the Japan Aerospace Exploration Agency (JAXA) and NASA, along with ESA participation. The assembly has thin metal struts fanning outward from a silver ring in the center of the image. Shiny ridge surfaces (actually many thin mirrors!) fill in the spaces between the struts.

Nested mirrors like this have been used in many X-ray telescopes. Above is a close-up of the mirrors for an upcoming observatory called the X-ray Imaging and Spectroscopy Mission (XRISM, pronounced “crism”), which is a Japan Aerospace Exploration Agency (JAXA)-led international collaboration between JAXA, NASA, and the European Space Agency (ESA).

The XRISM mirror assembly uses thin, gold-coated mirrors to make them super reflective to X-rays. Each of the two assemblies has 1,624 of these layers packed in them. And each layer is so smooth that the roughest spots rise no more than one millionth of a millimeter.

Chandra observations of the Perseus galaxy cluster showing turbulence in the hot X-ray-emitting gas.

Why go to all this trouble to collect this elusive light? X-rays are a great way to study the hottest and most energetic areas of the universe! For example, at the centers of certain galaxies, there are black holes that heat up gas, producing all kinds of light. The X-rays can show us light emitted by material just before it falls in.

Stay tuned to NASA Universe on Twitter and Facebook to keep up with the latest on XRISM and other X-ray observatories.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
4 years ago
Today We Celebrate The Mission That Piqued Our Curiosities, And Drove NASA’s Perseverance To Pursue

Today we celebrate the mission that piqued our curiosities, and drove NASA’s perseverance to pursue further exploration of the Red Planet. The Sojourner rover landed on July 4, 1997, after hitching a ride aboard the Mars Pathfinder mission. Its innovative design became the template for future missions. The rover, named after civil rights pioneer Sojourner Truth, outlived its design life 12 times. This panoramic view of Pathfinder's Ares Vallis landing site shows Sojourner rover is the distance. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
9 years ago

How Well Do You Know Venus?

Similar in structure and size to Earth, Venus’ thick, toxic atmosphere traps heat in a runaway greenhouse effect. A permanent layer of clouds traps heat, creating surface temperatures hot enough to melt lead.

How Well Do You Know Venus?

How did Venus get its name? It is named for the ancient Roman goddess of love and beauty. It is believed that Venus was named for the most beautiful of the ancient gods because it shone the brightest of the five planets known to ancient astronomers.

How Well Do You Know Venus?

Here are a few fun facts that you might not know:

One day on Venus lasts as long as 243 Earth days (aka the time it takes for Venus to rotate or spin once)

Venus is a rocky planet, also known as a terrestrial planet

Venus’ thick and toxic atmosphere is made up mostly of carbon dioxide and nitrogen, with clouds of sulfuric acid droplets

Venus has no moons or rings

More than 40 spacecraft have explored the planet

No evidence of life has been found on Venus. The planet’s extreme high temperatures of almost 480 degrees Celsius (900 degrees Fahrenheit) makes it seem an unlikely place for life as we know it

Venus spins backwards when compared to the other planets. This means that the sun rises in the west and sets in the east

Night Light

How Well Do You Know Venus?

Did you know that Venus is the brightest planet in Earth’s dark skies? Only the moon — which is not a planet — is brighter. Venus outshines the other planets because it is closer and its thick cloud cover is excellent at reflecting sunlight.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
1 year ago
The first anniversary image from NASA’s James Webb Space Telescope displays star birth like it’s never been seen before, full of detailed, impressionistic texture. The subject is the Rho Ophiuchi cloud complex, the closest star-forming region to Earth. It is a relatively small, quiet stellar nursery, but you’d never know it from Webb’s chaotic close-up. Jets bursting from young stars crisscross the image, impacting the surrounding interstellar gas and lighting up molecular hydrogen, shown in red. Some stars display the telltale shadow of a circumstellar disk, the makings of future planetary systems.

The young stars at the center of many of these disks are similar in mass to the Sun, or smaller. The heftiest in this image is the star S1, which appears amid a glowing cave it is carving out with its stellar winds in the lower half of the image. The lighter-colored gas surrounding S1 consists of polycyclic aromatic hydrocarbons, a family of carbon-based molecules that are among the most common compouds found in space. Download the full-resolution version from the Space Telescope Science Institute.

Credit: NASA, ESA, CSA, STScI, and K. Pontoppidan (STScI). Image Processing: A. Pagan (STScI)

The James Webb Space Telescope has just completed a successful first year of science. Let’s celebrate by seeing the birth of Sun-like stars in this brand-new image from the Webb telescope!

This is a small star-forming region in the Rho Ophiuchi cloud complex. At 390 light-years away, it's the closest star-forming region to Earth. There are around 50 young stars here, all of them similar in mass to the Sun, or smaller. The darkest areas are the densest, where thick dust cocoons still-forming protostars. Huge red bipolar jets of molecular hydrogen dominate the image, appearing horizontally across the upper third and vertically on the right. These occur when a star first bursts through its natal envelope of cosmic dust, shooting out a pair of opposing jets into space like a newborn first stretching her arms out into the world. In contrast, the star S1 has carved out a glowing cave of dust in the lower half of the image. It is the only star in the image that is significantly more massive than the Sun.

Thanks to Webb’s sensitive instruments, we get to witness moments like this at the beginning of a star’s life. One year in, Webb’s science mission is only just getting started. The second year of observations has already been selected, with plans to build on an exciting first year that exceeded expectations. Here’s to many more years of scientific discovery with Webb.

Make sure to follow us on Tumblr for your regular dose of space!

Credits: NASA, ESA, CSA, STScI, Klaus Pontoppidan (STScI)


Tags
8 years ago

Celebrating 10 Years of Revolutionary Solar Views

Twin spacecraft give humanity unprecedented views of the entire sun at one time, traveling to the far side of our home star over the course of a 10-year mission.

image

These two spacecraft are called STEREO, short for Solar and Terrestrial Relations Observatory. Launched on Oct. 25, 2006, and originally slated for a two-year mission, both spacecraft sent back data for nearly eight years, and STEREO-A still sends information and images from its point of view on the far side of the sun.

image

STEREO watches the sun from two completely new perspectives. It also provides information invaluable for understanding the sun and its impact on Earth, other worlds, and space itself – collectively known as space weather. On Earth, space weather can trigger things like the aurora and, in extreme cases, put a strain on power systems or damage high-flying satellites.

Because the rest of our sun-watching satellites orbit near our home planet, STEREO’s twin perspectives far from Earth give us a unique opportunity to look at solar events from all sides and understand them in three dimensions.

image

We use data from STEREO and other missions to understand the space environment throughout the solar system. This helps operators for missions in deep space prepare for the sudden bursts of particles and magnetic field that could pose a danger to their spacecraft. 

image

STEREO has also helped us understand other objects in our solar system – like comets. Watching how a comet’s tail moves gives us clues about the constant stream of particles that flows out from the sun, called the solar wind.

image

STEREO is an essential piece of our heliophysics fleet, which includes 17 other missions. Together, these spacecraft shed new light on the sun and its interaction with space, Earth, and other worlds throughout the solar system. 

To celebrate, we’re hosting a Facebook Live event on Wednesday, Oct. 26. Join us at noon ET on the NASA Sun Science Facebook page to learn more about STEREO and ask questions. 

Learn more about how NASA studies the sun at: www.nasa.gov/stereo

Follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

What do *you* think is inside a black hole? Or If they sun was a black hole what would we see in the sky? Thanks!


Tags
8 years ago

For more information, visit: https://www.missionjuno.swri.edu/junocam/processing?id=182

Purple Haze, All Around. See Jupiter In A Whole New Light In This Citizen Scientist-created JunoCam Image.

Purple haze, all around. See Jupiter in a whole new light in this citizen scientist-created JunoCam image.

7 years ago

1,000 Days in Orbit: MAVEN’s Top 10 Discoveries at Mars

On June 17, our MAVEN (Mars Atmosphere and Volatile Evolution Mission) will celebrate 1,000 Earth days in orbit around the Red Planet.

image

Since its launch in November 2013 and its orbit insertion in September 2014, MAVEN has been exploring the upper atmosphere of Mars. MAVEN is bringing insight to how the sun stripped Mars of most of its atmosphere, turning a planet once possibly habitable to microbial life into a barren desert world.

image

Here’s a countdown of the top 10 discoveries from the mission so far:

10. Unprecedented Ultraviolet View of Mars

image

Revealing dynamic, previously invisible behavior, MAVEN was able to show the ultraviolet glow from the Martian atmosphere in unprecedented detail. Nightside images showed ultraviolet “nightglow” emission from nitric oxide. Nightglow is a common planetary phenomenon in which the sky faintly glows even in the complete absence of eternal light.

9. Key Features on the Loss of Atmosphere

image

Some particles from the solar wind are able to penetrate unexpectedly deep into the upper atmosphere, rather than being diverted around the planet by the Martian ionosphere. This penetration is allowed by chemical reactions in the ionosphere that turn the charged particles of the solar wind into neutral atoms that are then able to penetrate deeply.

8. Metal Ions

image

MAVEN made the first direct observations of a layer of metal ions in the Martian ionosphere, resulting from incoming interplanetary dust hitting the atmosphere. This layer is always present, but was enhanced dramatically by the close passage to Mars of Comet Siding Spring in October 2014.

7. Two New Types of Aurora

image

MAVEN has identified two new types of aurora, termed “diffuse” and “proton” aurora. Unlike how we think of most aurorae on Earth, these aurorae are unrelated to either a global or local magnetic field.

6. Cause of the Aurorae

image

These aurorae are caused by an influx of particles from the sun ejected by different types of solar storms. When particles from these storms hit the Martian atmosphere, they can also increase the rate of loss of gas to space, by a factor of ten or more.

5. Complex Interactions with Solar Wind

image

The interactions between the solar wind and the planet are unexpectedly complex. This results due to the lack of an intrinsic Martian magnetic field and the occurrence of small regions of magnetized crust that can affect the incoming solar wind on local and regional scales. The magnetosphere that results from the interactions varies on short timescales and is remarkably “lumpy” as a result.

4. Seasonal Hydrogen

image

After investigating the upper atmosphere of the Red Planet for a full Martian year, MAVEN determined that the escaping water does not always go gently into space. The spacecraft observed the full seasonal variation of hydrogen in the upper atmosphere, confirming that it varies by a factor of 10 throughout the year. The escape rate peaked when Mars was at its closest point to the sun and dropped off when the planet was farthest from the sun.

3. Gas Lost to Space

image

MAVEN has used measurements of the isotopes in the upper atmosphere (atoms of the same composition but having different mass) to determine how much gas has been lost through time. These measurements suggest that 2/3 or more of the gas has been lost to space.

2. Speed of Solar Wind Stripping Martian Atmosphere

image

MAVEN has measured the rate at which the sun and the solar wind are stripping gas from the top of the atmosphere to space today, along with details of the removal process. Extrapolation of the loss rates into the ancient past – when the solar ultraviolet light and the solar wind were more intense – indicates that large amounts of gas have been lost to space through time.

1. Martian Atmosphere Lost to Space

image

The Mars atmosphere has been stripped away by the sun and the solar wind over time, changing the climate from a warmer and wetter environment early in history to the cold, dry climate that we see today.

Maven will continue its observations and is now observing a second Martian year, looking at the ways that the seasonal cycles and the solar cycle affect the system.

For more information about MAVEN, visit: www.nasa.gov/maven

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Stop. Drop. And Apply to #BeAnAstronaut!

image

Feel like your place is in the stars? Are you an adventure seeker, an explorer, a person passionate about science and space? We need you!!

image

Applications are OPEN for our newest class of #Artemis astronauts. Once chosen, you could be the next person to step foot on the Moon and eventually embark on missions to Mars!

image

Do you have a friend who should apply? Tag them. Do you know someone who's still in school? Encourage them to follow their dreams and aim high.

image

To give you a sneak peak of what life will be like if you decide to #BeAnAstronaut, we’re taking you behind-the-scenes of astronaut life over the course of March. 

image

APPLY NOW AND GET MORE INFORMATION HERE! 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • carolmustache
    carolmustache liked this · 4 years ago
  • caffeinatedvampireslayer
    caffeinatedvampireslayer liked this · 5 years ago
  • unknown-uwoit
    unknown-uwoit liked this · 5 years ago
  • thnks-fr-th-samulet
    thnks-fr-th-samulet liked this · 5 years ago
  • wolfbarkbite
    wolfbarkbite reblogged this · 5 years ago
  • adt-space
    adt-space reblogged this · 5 years ago
  • stolenrocket218
    stolenrocket218 liked this · 5 years ago
  • kanzaki19
    kanzaki19 liked this · 5 years ago
  • smol-bean-dragon-hoard
    smol-bean-dragon-hoard liked this · 5 years ago
  • spilloverlove
    spilloverlove liked this · 5 years ago
  • getsmashed
    getsmashed liked this · 5 years ago
  • mloyasworld
    mloyasworld liked this · 5 years ago
  • elsadventures
    elsadventures liked this · 5 years ago
  • wildcard47
    wildcard47 reblogged this · 5 years ago
  • wildcard47
    wildcard47 liked this · 5 years ago
  • knopelesslydevoted
    knopelesslydevoted reblogged this · 5 years ago
  • fellowitch
    fellowitch liked this · 5 years ago
  • immano
    immano liked this · 5 years ago
  • niggitynice
    niggitynice reblogged this · 5 years ago
  • just-living-for-pretty-rocks
    just-living-for-pretty-rocks reblogged this · 5 years ago
  • niggitynice
    niggitynice liked this · 5 years ago
  • legendarydaftpunkfunnyrebel
    legendarydaftpunkfunnyrebel liked this · 5 years ago
  • importantcalzonegardenthing-blog
    importantcalzonegardenthing-blog liked this · 5 years ago
  • cardstumble
    cardstumble liked this · 5 years ago
  • feed-the-crows
    feed-the-crows liked this · 5 years ago
  • prairiestylebaking
    prairiestylebaking liked this · 5 years ago
  • workman
    workman reblogged this · 5 years ago
  • studiesaestheticly
    studiesaestheticly liked this · 5 years ago
  • klaudiascience888---888-blog
    klaudiascience888---888-blog liked this · 5 years ago
  • awlwren
    awlwren liked this · 5 years ago
  • whitecatnatalie
    whitecatnatalie reblogged this · 5 years ago
  • whitecatnatalie
    whitecatnatalie liked this · 5 years ago
  • m197432k
    m197432k liked this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags