Labor Day reflections: the Nancy Grace Roman Space Telescope’s primary mirror reflects an American flag hanging overhead. The mirror, which will collect and focus light from cosmic objects near and far, has been completed. Renamed after our first chief astronomer and "Mother of Hubble," the Roman Space Telescope will capture stunning space vistas with a field of view 100 times greater than Hubble Space Telescope images. The spacecraft will study the universe using infrared light, which human eyes can’t detect without assistance. This Labor Day, we thank all the people who work to advance the future for humanity. Credit: L3Harris Technologies Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Earlier this year, we selected the Lucy mission to make the first-ever visit to a group of asteroids known as the Trojans. This swarm of asteroids orbits in two loose groups around the Sun, with one group always ahead of Jupiter in its path, and the other always behind. The bodies are stabilized by the Sun and Jupiter in a gravitational balancing act, gathering in locations known as Lagrange points.
Jupiter's swarms of Trojan asteroids may be remnants of the material that formed our outer planets more than 4 billion years ago—so these fossils may help reveal our most distant origins. "They hold vital clues to deciphering the history of the solar system," said Dr. Harold F. Levison, Lucy principal investigator from Southwest Research Institute (SwRI) in Boulder, Colorado.
Lucy takes its name from the fossilized human ancestor, called "Lucy" by her discoverers, whose skeleton provided unique insight into humanity's evolution. On the night it was discovered in 1974, the team's celebration included dancing and singing to The Beatles' song "Lucy In The Sky With Diamonds." At some point during that evening, expedition member Pamela Alderman named the skeleton "Lucy," and the name stuck. Jump ahead to 2013 and the mission's principal investigator, Dr. Levison, was inspired by that link to our beginnings to name the spacecraft after Lucy the fossil. The connection to The Beatles' song was just icing on the cake.
One of two missions selected in a highly competitive process, Lucy will launch in October 2021. With boosts from Earth's gravity, it will complete a 12-year journey to seven different asteroids: a Main Belt asteroid and six Trojans.
No other space mission in history has been launched to as many different destinations in independent orbits around the Sun. Lucy will show us, for the first time, the diversity of the primordial bodies that built the planets.
Lucy's complex path will take it to both clusters of Trojans and give us our first close-up view of all three major types of bodies in the swarms (so-called C-, P- and D-types). The dark-red P- and D-type Trojans resemble those found in the Kuiper Belt of icy bodies that extends beyond the orbit of Neptune. The C-types are found mostly in the outer parts of the Main Belt of asteroids, between the orbits of Mars and Jupiter. All of the Trojans are thought to be abundant in dark carbon compounds. Below an insulating blanket of dust, they are probably rich in water and other volatile substances.
This diagram illustrates Lucy's orbital path. The spacecraft's path (green) is shown in a slowly turning frame of reference that makes Jupiter appear stationary, giving the trajectory its pretzel-like shape.
This time-lapsed animation shows the movements of the inner planets (Mercury, brown; Venus, white; Earth, blue; Mars, red), Jupiter (orange), and the two Trojan swarms (green) during the course of the Lucy mission.
Lucy and its impressive suite of remote-sensing instruments will study the geology, surface composition, and physical properties of the Trojans at close range. The payload includes three imaging and mapping instruments, including a color imaging and infrared mapping spectrometer and a thermal infrared spectrometer. Lucy also will perform radio science investigations using its telecommunications system to determine the masses and densities of the Trojan targets.
Several institutions will come together to successfully pull off this mission. The Southwest Research Institute in Boulder, Colorado, is the principal investigator institution. Our Goddard Space Flight Center will provide overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space Systems in Denver will build the spacecraft. Instruments will be provided by Goddard, the Johns Hopkins Applied Physics Laboratory and Arizona State University. Discovery missions are overseen by the Planetary Missions Program Office at our Marshall Space Flight Center in Huntsville, Alabama, for our Planetary Science Division.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Galaxies are like cities made of oodles of stars, gas, and dust bound together by gravity. These beautiful cosmic structures come in many shapes and sizes. Though there are a slew of galaxies in the universe, there are only a few we can see with the unaided eye or backyard telescope.
How many types are out there, how’d so many of them wind up with weird names, and how many stars live inside them? Hold tight while we explore these cosmic metropolises.
Galaxies come in lots of different shapes, sizes, and colors. But astronomers have noticed that there are mainly three types: spiral, elliptical, and irregular.
Spiral galaxies, like our very own Milky Way, look similar to pinwheels! These galaxies tend to have a bulging center heavily populated by stars, with elongated, sparser arms of dust and stars that wrap around it. Usually, there’s a huge black hole hiding at the center, like the Milky Way’s Sagittarius A* (pronounced A-star). Our galactic neighbor, Andromeda (also known as Messier 31 or M31), is also a spiral galaxy!
Elliptical galaxies tend to be smooth spheres of gas, dust, and stars. Like spiral galaxies, their centers are typically bulges surrounded by a halo of stars (but minus the epic spiral arms). The stars in these galaxies tend to be spread out neatly throughout the galaxies and are some of the oldest stars in the universe! Messier 87 (M87) is one example of an elliptical galaxy. The supermassive black hole at its center was recently imaged by the Event Horizon Telescope.
Irregular galaxies are, well … a bit strange. They have one-of-a-kind shapes, and many just look like messy blobs. Astronomers think that irregular galaxies' uniqueness is a result of interactions with other galaxies, like collisions! Galaxies are so big, with so much distance between their stars, that even when they collide, their stars usually do not. Galaxy collisions have been important to the formation of our Milky Way and others. When two galaxies collide, clouds of gas, dust, and stars are violently thrown around, forming an entirely new, larger one! This could be the cause of some irregular galaxies seen today.
Now that we know the different types of galaxies, what about how many stars they contain? Galaxies can come in lots of different sizes, even among each type. Dwarf galaxies, the smallest version of spiral, elliptical, and irregular galaxies, are usually made up of 1,000 to billions of stars. Compared to our Milky Way’s 200 to 400 billion stars, the dwarf galaxy known as the Small Magellanic Cloud is tiny, with just a few hundred million stars! IC 1101, on the other hand, is one of the largest elliptical galaxies found so far, containing almost 100 trillion stars.
Ever wondered how galaxies get their names? Astronomers have a number of ways to name galaxies, like the constellations we see them in or what we think they resemble. Some even have multiple names!
A more formal way astronomers name galaxies is with two-part designations based on astronomical catalogs, published collections of astronomical objects observed by specific astronomers, observatories, or spacecraft. These give us cryptic names like M51 or Swift J0241.3-0816. Catalog names usually have two parts:
A letter, word, or short acronym that identifies a specific astronomical catalog.
A sequence of numbers and/or letters that uniquely identify the galaxy within that catalog.
For M51, the “M” comes from the Messier catalog, which Charles Messier started compiling in 1771, and the "51" is because it’s the 51st entry in that catalog. Swift J0241.3-0816 is a galaxy observed by the Swift satellite, and the numbers refer to its location in the sky, similar to latitude and longitude on Earth.
There’s your quick intro to galaxies, but there’s much more to learn about them. Keep up with NASA Universe on Facebook and Twitter where we post regularly about galaxies.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
What is your favorite sci-fi show about space?
I actually wasn’t a huge sci-fi person growing up, but of course I am a fan of Star Wars. After graduate school I stumbled upon Battlestar Galactica (the new one) and was definitely hooked, especially since I was living in Vancouver at the time and it was filmed there!
The solar system is huge, so let us break it down for you. Here are the top 10 things you should know this week:
1. Big “Wows” from Small Worlds
Our robotic explorers continue to send truly spectacular pictures and data from deep space. Our New Horizons mission to Pluto and Dawn mission to dwarf planet Ceres are revealing never-before-seen landscapes on a regular basis. If you missed it, check out the most recent images from Pluto and Ceres.
2. Deep Waters
Saturn’s moon Enceladus has intrigued many with its geysers that erupt continuously in spectacular plumes. Our Cassini spacecraft has provided scientists with data that is allowing them to determine the source of those plumes. New evidence points to a global ocean of liquid water hidden beneath the moon’s icy shell!
3. A Super Eclipse
This weekend a “supermoon” lunar eclipse will be visible in the night sky. Supermoons occur when the moon is at its closest point to the Earth in its orbit, making it appear slightly larger. This one is extra special because it will also undergo a lunar eclipse! Beginning at 9:07 p.m. EDT on Sept. 27, make sure you get outside and look up! For more information visit: What’s Up for September.
4. All Things Equal
Sept. 23 marks the autumnal equinox, which is the official beginning of the Fall season in the northern hemisphere. The word “equinox” comes from the Latin for “equal night,” meaning day and night will be of equal length on that day.
5. Explore Goddard Space Flight Center
This weekend, Goddard Space Flight Center will be offering tours, presentations and other activities for children and adults. The theme this year is “Celebrating Hubble and the Spirit of Exploration”. This event is free and open to the public, and will be held on Saturday, Sept. 26 from 11 a.m. to 5 p.m. Join in HERE.
6. Titan’s Haze
This week, our Cassini spacecraft will observe Saturn’s hazy, planet-sized moon Titan. Scientists will use these images to look for clouds across Titan’s exotic regions. Explore HERE.
7. New Horizons Team on Pluto
Ever wondered what it was like to be part of the team that explored Pluto for the first time? If you’ll be near the Smithsonian National Air and Space Museum in Washington, DC on Sept. 22 you’re invited to a free lecture and Q&A to find out! Get the details HERE.
8. Martian Weather Report
Every day, our Mars Reconnaissance Orbiter delivers a global view of the planet and its atmospheric activity. The most recent report included lots of water-ice clouds in the afternoon, with dust storms developing along the south polar region. Get the latest HERE.
9. Imagine: The View from Pluto
If you’ve ever wondered what it would look like to stand on the icy terrain of Pluto, you’re not alone. Artist Karl Kofoed created a series of digital paintings that render scenes from the dwarf planet based on data from the New Horizons July 14 Pluto flyby. View them HERE.
10. What’s the Big Idea?
We’re giving university students a chance to help us come up with solutions for our journey to Mars. This Breakthrough, Innovative, and Game-changing (BIG) Idea Challenge will look for creative solutions for generating lift using inflatable spacecraft heat shields on Mars. Enter your BIG Idea.
Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com
What advice do you have for Hispanic boys and girls who see themselves in you and are inspired by your achievements?
Hi! The Sun is so bright I need shades... that are ISO 12312-2 compliant! So glad that you are all here and excited about the eclipse. I’m Alexa Halford and ready to answer your questions.
Meet America’s new astronauts! These 12 humans have been selected as part of our 2017 astronaut class and will report for duty at our Johnson Space Center in August.
Get to know each of them here: https://nasa.tumblr.com/post/161552645129/meet-americas-newastronauts
Today marks astronaut Scott Kelly’s 300th day in space! He, along with Russian cosmonaut Mikhail Kornienko, are testing the limits of human research during their one-year mission onboard the International Space Station.
While most expeditions to the space station last four to six months, their time on orbit has been doubled. By increasing the length of their time in space, researchers hope to better understand how the human body reacts and adapts to long-duration spaceflight.
1. You might get bored and play ping pong with yourself…and a water droplet.
2. There’s a chance that you’ll get a Tweet from someone famous…like the President!
3. There may come a time where you’ll have to fix something outside the station during a spacewalk.
4. You might develop a ‘green thumb’ and grow plants in space.
5. And, there’s no doubt you get to see the Earth from a totally new perspective.
To learn more about the one-year mission, visit: https://www.nasa.gov/1ym
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our solar system is huge, so let us break it down for you. Here are 5 things to know this week:
1. Dancing with a Star
Our local star, better known as the sun, teems with activity. This month NASA has been tracking regions that burst with magnetic loops. The Solar Dynamics Observatory is one of several space-based assets that keep tabs on the sun daily, watching as charged particles trace the magnetic field, forming bright lines as they emit light in ultraviolet wavelengths.
2. An Idyll for Ida
On Nov. 24, the asteroid Ida makes its closest approach to Earth (at a very safe distance). Ida is the first asteroid found to have its own moon, and the second ever visited by a spacecraft. Its close encounter happened in 1993 as Galileo flew by en route to Jupiter.
3. Moonshine
On Nov. 23, the Cassini spacecraft will fly near Saturn's icy moon Tethys. Several instruments aboard Cassini will collect data, including an eight-frame color image mosaic. Between Nov. 27 and Dec. 2, Cassini will have very limited communications with Earth, because Cassini will enter solar conjunction, when Cassini and Saturn are on the other side of the Sun from Earth.
4. The Moon Will Occult Aldebaran
That may sound ominous, but all it means is that Earth's moon will pass in front of the giant red star Aldebaran on Nov. 26. Aldebaran is the bright "eye" of the constellation Taurus. The event will only be visible in some parts of North America. Details can be found HERE.
5. One Wild Ride, One Year Later
What a year it's been for the Rosetta mission since the Philae lander came to rest on the surface of Comet 67P/Churyumov-Gerasimenko in November 2014. A steady flow of data from the orbiter, together with several days of information sent from the lander, is providing a detailed picture of this remnant from the creation of the solar system.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The adventures awaiting astronauts on future long-duration missions have technologists researching sustainable ways to live away from Earth. We’re using what we know from almost 20 years of a continuous human presence on the International Space Station and looking at new technologies to prepare for missions to the Moon and Mars.
Biotechnology – technology that uses living organisms to make products that provide a new use – is key to this research.
With biotechnology, we’re developing new ways to manufacture medicines, build habitats and more in space. Here are some ways biotechnology is advancing spaceflight and how the same research is reaping benefits on Earth.
Planning ways to supply food for a multi-year mission on the Moon or Mars may require making food and nutrients in space. Our scientists are testing an early version of a potential solution: get microorganisms to produce vital nutrients like those usually found in vegetables. Then, whenever they’re needed, astronauts can drink them down.
The microorganisms are genetically engineered to rapidly produce controlled quantities of essential nutrients. Because the microorganisms and their food source both have a long shelf-life at room temperature and only need water to be activated, the system provides a simple, practical way to produce essential nutrients on-demand. The same kind of system designed for space could also help provide nutrition for people in remote areas of our planet.
Our researchers are evaluating the first batches of BioNutrient samples that came back to Earth after an experimental run on the International Space Station.
Because space travel takes a toll on the human body, we’re also researching how biotechnology can be used to advance the field of regenerative medicine.
Related cells that are joined together are collectively referred to as tissue, and these cells work together as organs to accomplish specific functions in the human body. Blood vessels around the cells vascularize, providing nutrients to the tissue to keep it healthy.
Our Vascular Tissue Challenge offers a $500,000 prize to be divided among the first three teams that successfully create thick, metabolically-functional human vascularized organ tissue in a controlled laboratory environment. The vascularized, thick-tissue models resulting from this challenge will function as organ analogs, or models, that can be used to study deep space environmental effects, such as radiation, and to develop strategies to minimize the damage to healthy cells.
Humans have relied on plants’ medicinal qualities for thousands of years for everything from alleviating minor ailments to curing serious diseases. Now, researchers are trying to simplify the process of turning plants into medicine (i.e. how to make it compact and portable). If successful, the cost of biomanufacturing pharmaceuticals on Earth could go down, and plants could produce medicines in space.
Creating medicine on demand isn’t something we typically do, so we’re turning to experts in the field for help. Researchers at the University of California, Davis are transforming plants into mini-medicine factories for future Mars missions. They’re genetically altering an ordinary type of lettuce so that it produces a protein called parathyroid hormone. This hormone is an approved drug for treating osteoporosis, a common condition where bones become weak and brittle.
This type of research is important to long duration spaceflight. When astronauts land on Mars, they will have spent more than half a year in zero gravity on the flight there, and they’ll need to be strong and ready to explore. Having the technologies needed to treat that possibility, and other unanticipated health effects of long duration spaceflight, is crucial.
Vitamins aren’t the only thing astronauts could be growing on Mars; we’re exploring technologies that could grow structures out of fungi.
An early-stage research project underway at our Ames Research Center is prototyping technologies that could "grow" habitats on the Moon, Mars and beyond out of life – specifically, fungi and the unseen underground threads that make up the main part of the fungus. These tiny threads build complex structures with extreme precision, networking out into larger structures like mushrooms. With the right conditions, they can be coaxed into making new structures – ranging from a material similar to leather to the building blocks for a planetary home.
The myco-architecture project envisions a future where astronauts can construct a habitat out of the lightweight fungi material. Upon arrival, by unfolding a basic structure made up of dormant fungi and simply adding water, the fungi would grow around that framework into a fully functional human habitat – all while being safely contained to avoid contaminating the external environment.
Once astronauts arrive on the surface of the Moon or a more distant planet, they’ll have to carefully manage garbage. This waste includes some stuff that gets flushed on Earth.
Today, we’re already using a recycling system on the space station to turn urine into drinking water. Poop on the other hand is contained then disposed of on spacecraft returning to Earth. That won’t be possible on more distant journeys, so, we’re turning to biomanufacturing for a practical solution.
Biology can serve as an effective recycling factory. Microorganisms such as yeast and algae feed on all kinds of things classified as “mission waste.” Processing their preferred form of nourishment generates products that can serve as raw materials used to make essential supplies like nutrients, medicines, plastic and fuel.
Biotechnology is preparing us for longer space missions to the Moon and then Mars – farther from Earth than humans have ever traveled before. As we prepare for those exciting missions, we’re also conducting research on the space station for the primary benefit of everyone on Earth.
January is National Biotechnology Month. To learn more about some of the ways NASA is using biotechnology to solve challenges in space and improve life on Earth, visit this link.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts