Hubble’s 5 Weirdest Black Hole Discoveries

Hubble’s 5 Weirdest Black Hole Discoveries

Our Hubble Space Telescope has been exploring the wonders of the universe for nearly 30 years, answering some of our deepest cosmic questions. Some of Hubble’s most exciting observations have been about black holes — places in space where gravity pulls so much that not even light can escape. As if black holes weren’t wild enough already, Hubble has helped us make discoveries that show us they’re even weirder than we thought!

Supermassive Black Holes Are Everywhere

image

First, these things are all over the place. If you look at any random galaxy in the universe, chances are it has a giant black hole lurking in its heart. And when we say giant, we’re talking as massive as millions or even billions of stars! 

image

Hubble found that the mass of these black holes, hidden away in galactic cores, is linked to the mass of the host galaxy — the bigger the galaxy, the bigger the black hole. Scientists think this may mean that the black holes grew along with their galaxies, eating up some of the stuff nearby.

Some Star Clusters Have Black Holes

image

A globular cluster is a ball of old, very similar stars that are bound together by gravity. They’re fairly common — our galaxy has at least 150 of them — but Hubble has found some black sheep in the herd. Some of these clusters are way more massive than usual, have a wide variety of stars and may even harbor a black hole at the center. This suggests that at least some of the globular clusters in our galaxy may have once been dwarf galaxies that we absorbed.

Black Hole Jets Regulate Star Birth

image

While black holes themselves are invisible, sometimes they shoot out huge jets of energy as gas and dust fall into them. Since stars form from gas and dust, the jets affect star birth within the galaxy. 

image

Sometimes they get rid of the fuel needed to keep making new stars, but Hubble saw that it can also keep star formation going at a slow and steady rate.

Black Holes Growing in Colliding Galaxies

image

If you’ve ever spent some time stargazing, you know that staring up into a seemingly peaceful sea of stars can be very calming. But the truth is, it’s a hectic place out there in the cosmos! Entire galaxies — these colossal collections of gas, dust, and billions of stars with their planets — can merge together to form one supergalaxy. You might remember that most galaxies have a supermassive black hole at the center, so what happens to them when galaxies collide? 

image

In 2018, Hubble unveiled the best view yet of close pairs of giant black holes in the act of merging together to form mega black holes!

Gravitational Wave Kicks Monster Black Hole Out of Galactic Core

Hubble’s 5 Weirdest Black Hole Discoveries

What better way to spice up black holes than by throwing gravitational waves into the mix! Gravitational waves are ripples in space-time that can be created when two massive objects orbit each other. 

image

In 2017, Hubble found a rogue black hole that is flying away from the center of its galaxy at over 1,300 miles per second (about 90 times faster than our Sun is traveling through the Milky Way). What booted the black hole out of the galaxy’s core? Gravitational waves! Scientists think that this is a case where two galaxies are in the late stages of merging together, which means their central black holes are probably merging too in a super chaotic process. 

Want to learn about more of the highlights of Hubble’s exploration? Check out this page! https://www.nasa.gov/content/goddard/2017/highlights-of-hubble-s-exploration-of-the-universe

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

7 years ago

100 Days in Houston

A lot can happen in 100 days...

At our Johnson Space Center, located in Houston, it has been busy since July 10. Here are six things that have been going on in Houston with our astronauts, the International Space Station and our next great telescope! Take a look:

1. Our James Webb Space Telescope is Spending 100 Days in a Freezing Cold Chamber

Imagine seeing 13.5 billion light-years back in time, watching the birth of the first stars, galaxies evolve and solar systems form…our James Webb Space Telescope will do just that once it launches in 2019.

image

Webb will be the premier observatory of the next decade, studying every phase in the cosmic history of our universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems.

On July 10, the Webb telescope entered Johnson Space Center’s historic Chamber A for its final cryogenic test that lasts about 100 days behind a closed giant vault-like door. 

Why did we put Webb in this freezing cold chamber? To ensure it can withstand the harsh environment it will experience in space.

image

The telescope has been in a space-like environment in the chamber, tested at cryogenic temperatures. In space, the telescope must operate at extremely cold temperatures so that it can detect infrared light – heat radiation -- from faint, distant objects. 

image

To keep the telescope cold while in space, Webb has a sunshield the size of a tennis court, which blocks sunlight (as well as reflected light from the Earth and Moon). This means that the sun-facing side of the observatory is incredibly hot while the telescope-side remains at sub-freezing temperatures.

2. Our 12 new astronaut candidates reported to Houston to start training

image

Our newest class of astronaut candidates, which were announced on June 7, reported for training on August 13. These candidates will train for two years on International Space Station systems, space vehicles and Russian language, among many other skills, before being flight-ready. 

3. Our Mission Control Center operated for 2,400 hours

image

While astronauts are in space, Mission Control operates around the clock making sure the crew is safe and the International Space Station is functioning properly. This means workers in Mission Control work in three shifts, 7 a.m. – 4 p.m., 3 p.m. – midnight and 11 p.m. – 8 a.m. This includes holidays and weekends. Day or night, Mission Control is up and running.

4. Key Teams at Johnson Space Center Continued Critical Operations During Hurricane Harvey

image

Although Johnson Space Center closed during Hurricane Harvey, key team members and critical personnel stayed onsite to ensure crucial operations would continue. Mission Control remained in operation throughout this period, as well as all backup systems required to maintain the James Webb Space Telescope, which is at Johnson for testing, were checked prior to the arrival of the storm, and were ready for use if necessary.

5. Crews on the International Space Station conducted hundreds of science experiments.

image

Mission Control at Johnson Space Center supported astronauts on board the International Space Station as they worked their typical schedule in the microgravity environment. Crew members work about 10 hours a day conducting science research that benefits life on Earth as well as prepares us for travel deeper into space. 

image

The space station team in Houston supported a rigorous schedule of launches of cargo that included supplies and science materials for the crew living and working in the orbiting laboratory, launched there by our commercial partners. 

6. Two new crews blasted off to space and a record breaking astronaut returned from a stay on space station

image

Houston is home to the Astronaut Corps, some of whom end up going out-of-this-world. On July 28, NASA Astronaut Randy Bresnik launched to the International Space Station alongside Italian astronaut Paolo Naspoli and Russian cosmonaut Sergey Ryazanskiy. Joining them at the International Space Station were NASA Astronauts Joe Acaba and Mark Vande Hei who launched September 12 with Russian cosmonaut Alexander Misurkin.

image

When NASA Astronaut Peggy Whitson landed with crewmates Jack Fischer of NASA and Fyoder Yurchikhin of Roscosmos, she broke the record for the most cumulative time in space by a U.S. astronaut. She landed with over 650 days of cumulative flight time and more than 53 hours of spacewalk time. Upon her return, the Human Research Program in Houston studies her health and how the human body adapted to her time in space.

Learn more about the Johnson Space Center online, or on Facebook, Twitter or Instagram.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Astronaut Journal Entry - Week 12

Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry, written in space, by NASA astronaut Scott Tingle.

To read more entires from this series, visit our Space Blogs on Tumblr.

image

Wow, time has gone by extremely fast. The mid-deployment phase will be short-lived for me this time, as the new crew (Drew Feustel, Ricky Arnold, and Oleg Artemyev) will arrive on March 23rd, and then we have at least one spacewalk on the 29th, followed by a planned SpaceX Dragon cargo craft arrival on the 4th of April. It’s a little strange being up here with only two other crewmates. We are still very busy, but the overall work effort is half of what it was just a week ago. My crewmate, Nemo (Norishige Kanai), and I are trying to use the time to prepare for the upcoming very busy schedule, and we have been having some great success getting a ton of details taken care of.  

image

Yesterday I had a funny event, though. I was controlling a robot named “Justin” who was located in Munich. The research and demonstration events were so interesting and fun that I offered them my lunch hour to do an additional protocol and have a longer debrief session. The ground team responded happily and accepted the offer – any extra time with crew onboard the International Space Station (ISS) is valuable to our programs. Halfway through the event, the team needed a few minutes to shut down and restart the robot, and I surmised that since I was skipping my break, this would be a good time to use the toilet. And I did, use the toilet. And literally 3 minutes later I returned, waited another 2 minutes for the robot systems to connect, and we began another great session controlling Justin from ISS with no loss to science. 

Later that same day, I was approached by the ground team in Houston (not the test team I was working with in Munich) and queried if something was wrong, and why did I have to take a toilet break while we were executing valuable science? They were concerned that I might have a medical issue, as taking a break in the middle of some very valuable science is not normal for us to do while on ISS. It’s nice to know that we have literally hundreds of highly-trained professionals looking out for us.

Find more ‘Captain’s Log’ entries HERE.

Follow NASA astronaut Scott Tingle on Instagram and Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
6 years ago

Demo-1: What’s the Deal?

Whether or not you caught the SpaceX Crew Dragon launch this past weekend, here’s your chance to learn why this mission, known as Demo-1, is such a big deal.

The First of its Kind

Demo-1 is the first flight test of an American spacecraft designed for humans built and operated by a commercial company. 

Liftoff

image

The SpaceX Crew Dragon lifted off at 2:49 a.m. EST Saturday, March 2, on the company’s Falcon 9 rocket from Kennedy Space Center. 

This was the first time in history a commercially-built American crew spacecraft and rocket launched from American soil. 

A New Era in Human Spaceflight

Demo-1: What’s The Deal?

Upon seeing the arriving spacecraft, NASA astronaut Anne McClain snapped a photo from the International Space Station: “Welcome to a new era in human spaceflight.” 

Docking the Dragon

image

After making 18 orbits of Earth, the Crew Dragon spacecraft successfully attached to the International Space Station’s Harmony module at 5:51 a.m. EST Sunday, March 3. The Crew Dragon used the station’s new international docking adapter for the first time since astronauts installed it in August 2016. 

The docking phase, in addition to the return and recovery of Crew Dragon, are critical to understanding the system’s ability to support crew flights.

Opening the Hatch

Demo-1: What’s The Deal?

After opening the hatch between the two spacecraft, the crewmates configured Crew Dragon for its stay. 

They installed a ventilation system that cycles air from Crew Dragon to the station, installed window covers and checked valves. After that, the crew was all set for a welcoming ceremony for the visiting vehicle. 

Ripley and Little Earth

Demo-1: What’s The Deal?

Although the test is uncrewed, that doesn’t mean the Crew Dragon is empty. Along for the ride was Ripley, a lifelike test device outfitted with sensors to provide data about potential effects on future astronauts. (There is also a plush Earth doll included inside that can float in the microgravity!)

Inside the Dragon

For future operational missions, Crew Dragon will be able to launch as many as four crew members and carry more than 220 pounds of cargo. This will increase the number of astronauts who are able to live onboard the station, which will create more time for research in the unique microgravity environment.

Integration

Demo-1: What’s The Deal?

Since the arrival of SpaceX Crew Dragon, the three Expedition 58 crew members have returned to normal operations (with some new additions to the team!) 

Undocking

image

The Crew Dragon is designed to stay docked to station for up to 210 days, although the spacecraft used for this flight test will remain docked to the space station for only five days, departing Friday, March 8. (We will be providing live coverage — don’t miss it!)

SpaceX and NASA

image

Elon Musk, CEO and lead designer at SpaceX, expressed appreciation for NASA’s support: “SpaceX would not be here without NASA, without the incredible work that was done before SpaceX even started and without the support after SpaceX did start.”

Preparation for Demo-2

image

NASA and SpaceX will use data from Demo-1 to further prepare for Demo-2, the crewed flight test that will carry NASA astronauts and Doug Hurley and Bob Behnken to the International Space Station. NASA will validate the performance of SpaceX’s systems before putting crew on board for the Demo-2 flight, currently targeted for July 2019.

Demo-1: So What?

image

Demo-1 is a big deal because it demonstrates NASA and commercial companies working together to advance future space exploration! With Demo-1’s success, NASA and SpaceX will begin to prepare to safely fly astronauts to the orbital laboratory.

Follow along with mission updates with the Space Station blog.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

You don't necessarily need fancy equipment to watch one of the sky's most awesome shows: a solar eclipse. With just a few simple supplies, you can make a pinhole camera that allows you to view the event safely and easily. Before you get started, remember: You should never look at the Sun directly without equipment that's specifically designed for solar viewing. Do not use standard binoculars or telescopes to watch the eclipse, as the light could severely damage your eyes. Sunglasses also do NOT count as protection when attempting to look directly at the Sun. Stay safe and still enjoy the Sun's stellar show by creating your very own pinhole camera. It's easy! 

See another pinhole camera tutorial at https://www.jpl.nasa.gov/edu/learn/project/how-to-make-a-pinhole-camera/

Watch this and other eclipse videos on our YouTube channel:  https://youtu.be/vWMf5rYDgpc?list=PL_8hVmWnP_O2oVpjXjd_5De4EalioxAUi

A pinhole camera is just one of many viewing options. Learn more at https://eclipse2017.nasa.gov/safety 

Music credit: Apple of My Eye by Frederik Wiedmann

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Curiosity Rover: Five Years on Mars

The evening of August 5, 2012…five years ago…our Mars Curiosity rover landed on the Red Planet. 

image

Arriving at Mars at 10:32 p.m. PDT (morning of Aug 6 EDT), this rover would prove to be the most technologically advanced rover ever built.

image

Curiosity used a series of complicated landing maneuvers never before attempted. 

image

The specialized landing sequence, which employed a giant parachute, a jet-controlled descent vehicle and a daring “sky crane” maneuver similar to rappelling was devised because testing and landing techniques used during previous rover missions could not safely accommodate the much larger and heavier rover.

Curiosity’s mission: To determine whether the Red Planet ever was, or is, habitable to microbial life.

image

The car-size rover is equipped with 17 cameras, a robotic arm, specialized instruments and an on-board laboratory.

image

Let’s explore Curiosity’s top 5 discoveries since she landed on Mars five years ago…

1. Gale Crater had conditions suitable for life about 3.5 billion years ago

image

In 2013, Curiosity’s analysis of a rock sample showed that ancient Mars could have supported living microbes. Scientists identified sulfur, nitrogen, hydrogen, oxygen, phosphorus and carbon – some of the key chemical ingredients for life – in the powder Curiosity drilled out of a sedimentary rock near an ancient stream bed in Gale Crater.

image

Later, in 2014, Curiosity discovered that these conditions lasted for millions of years, perhaps much longer. This interpretation of Curiosity’s findings in Gale Crater suggests ancient Mars maintained a climate that could have produced long-lasting lakes at many locations on the Red Planet.

2. Organic molecules detected at several locations

image

In 2014, our Curiosity rover drilled into the Martian surface and detected different organic chemicals in the rock powder. This was the first definitive detection of organics in surface materials of Mars. These Martian organics could either have formed on Mars or been delivered to Mars by meteorites. 

image

Curiosity's findings from analyzing samples of atmosphere and rock powder do not reveal whether Mars has ever harbored living microbes, but the findings do shed light on a chemically active modern Mars and on favorable conditions for life on ancient Mars.

3. Present and active methane in Mars’ atmosphere

image

Also in 2014, our Curiosity rover measured a tenfold spike in methane, an organic chemical, in the atmosphere around the planet. This temporary increase in methane tells us there must be some relatively localized source.

image

Researchers used Curiosity’s onboard Sample Analysis at Mars (SAM) laboratory a dozen times in a 20-month period to sniff methane in the atmosphere. During two of those months, in late 2013 and early 2014, four measurements averaged seven parts per billion.

4. Radiation could pose health risks for humans

image

Measurements taken by our Curiosity rover since launch have provided us with the information needed to design systems to protect human explorers from radiation exposure on deep-space expeditions in the future. Curiosity’s Radiation Assessment Detector (RAD) was the first instrument to measure the radiation environment during a Mars cruise mission from inside a spacecraft that is similar to potential human exploration spacecraft.

image

The findings indicate radiation exposure for human explorers could exceed our career limit for astronauts if current propulsion systems are used. These measurements are being used to better understand how radiation travels through deep space and how it is affected and changed by the spacecraft structure itself. This, along with research on the International Space Station are helping us develop countermeasures to the impacts of radiation on the human body.

5. A thicker atmosphere and more water in Mars past

image

In 2015, Curiosity discovered evidence that has led scientists to conclude that ancient Mars was once a warmer, wetter place than it is today. 

To produce this more temperate climate, several researchers have suggested that the planet was once shrouded in a much thicker carbon dioxide atmosphere. You may be asking…Where did all the carbon go?

image

The solar wind stripped away much of Mars’ ancient atmosphere and is still removing tons of it every day. That said, 3.8 billion years ago, Mars might have had a moderately dense atmosphere, with a surface pressure equal to or less than that found on Earth.

Our Curiosity rover continues to explore the Red Planet today. On average, the rover travels about 30 meters per hour and is currently on the lower slope of Mount Sharp.

image

Get regular updates on the Curiosity mission by following @MarsCuriosity on Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Polar Vortex spills Arctic weather into North America

image

What in the world is a polar vortex? On Earth, it’s a large area of low pressure and extremely cold air that usually swirls over the Arctic, with strong counter-clockwise winds that trap the cold around the Pole. But disturbances in the jet stream and the intrusion of warmer mid-latitude air masses can disturb this polar vortex and make it unstable, sending Arctic air south into middle latitudes.

That has been the case in late January 2019 as frigid weather moves across the Midwest and Northern Plains of the United States, as well as interior Canada. Forecasters are predicting that air temperatures in parts of the continental United States will drop to their lowest levels since at least 1994, with the potential to break all-time record lows for January 30 and 31. With clear skies, steady winds, and snow cover on the ground, as many as 90 million Americans could experience temperatures at or below 0 degrees Fahrenheit (-18° Celsius), according to the National Weather Service (NWS).

The Goddard Earth Observing System Model above shows this air temperature movement at 2 meters (around 6.5 feet above the ground) from January 23-29. You can see some portions of the Arctic are close to the freezing point—significantly warmer than usual for the dark of mid-winter—while masses of cooler air plunge toward the interior of North America.

image

Science Behind the Polar Vortex / Credit: NOAA

Meteorologists predicted that steady northwest winds (10 to 20 miles per hour) were likely to add to the misery, causing dangerous wind chills below -40°F (-40°C) in portions of 12 states. A wind chill of -20°F can cause frostbite in as little as 30 minutes, according to the weather service.

Not sure how cold that is? Check out the low temperatures on January 30, 2019 in some of the coldest places on Earth—and a planetary neighbor:

 -46°F (-43°C) -- Chesterfield, Newfoundland

-36°F (-33°C) -- Yukon Territory, Canada

-33°F (-27°C) -- Fargo, North Dakota (Within the Polar Vortex)

-28°F (-18°C) -- Minneapolis, Minnesota (Within the Polar Vortex)

-27°F (-33°C) -- Amundsen-Scott South Pole Station, Antarctica

-24°F (-31°C) -- Chicago, Illinois (Within the Polar Vortex)

-15°F (5°C) -- Barrow, Alaska 

-99°F (-73°C) -- Mars

Learn more about the science behind the polar vortex and how NASA is modeling it here: https://go.nasa.gov/2Wtmb43.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

What is your advise to people who wanna be astronaut?


Tags
5 years ago

What are you most excited for in 2020?


Tags
6 years ago

Counting Down to ICON's Launch

In October 2018, we're launching the Ionospheric Connection Explorer, or ICON, to study Earth's dynamic interface to space.

image

The region of Earth's atmosphere on the edge of space plays a crucial role in our technology and exploration. This is where many of our satellites — including the International Space Station — orbit, and changing conditions in this region can cause problems for those satellites and disrupt communications signals.

This part of the atmosphere is shaped by a complicated set of factors. From below, regular weather on Earth can propagate upwards and influence this region. From above, electric and magnetic fields and charged particles in space — collectively called space weather — can also trigger changes. ICON's goal is to better understand this region and how it's shaped by these outside influences.  

10-mile-per-hour sensitivity

Though the ICON spacecraft zooms around Earth at upwards of 14,000 miles per hour, its wind-measuring instrument, named MIGHTI, can detect changes in wind speed smaller than 10 miles per hour. MIGHTI measures the tiny shifts in color caused by the motion of glowing gases in the upper atmosphere. Then, by making use of the Doppler effect — the same phenomenon that makes an ambulance siren change pitch as it passes you — scientists can figure out the gases' speed and direction.

image

97-minute orbital period

ICON circles Earth in just over an hour and a half, completing nearly 15 orbits per day. Its orbit is inclined by 27 degrees, so over time, its measurements will completely cover the latitudes scientists are most interested in, near the equator.

image

8 1/3-foot solar panel

ICON doesn't carry any onboard fuel. Instead, its single solar panel — measuring about 100 inches long and 33 inches wide, a little bit bigger than a standard door — produces power for the spacecraft. In science mode, ICON draws about 209-265 Watts of power.

7 years of teamwork

Now getting ready for launch, the ICON team has been hard at work ever since the idea for the mission was selected for further study in 2011.  

634 pounds

How much does good science weigh? In ICON's case, about as much as vending machine. The observatory weighs 634 pounds altogether.

5 snapshots per minute from FUV

Because ICON travels so fast, its Far Ultraviolet instrument takes eight snapshots per second of passing structures. This avoids blurring the images and captures the fine detail scientists need. But available bandwidth only allows FUV to send 5 images per minute, so the instrument uses a de-blurring technique called time-delay integration to combine 12 seconds' worth of data into a single image.

image

Image credit: Mark Belan

4 types of instruments collecting data in tandem

ICON carries four distinct instruments to study Earth's boundary to space.

2 MIGHTIs (Michelson Interferometer for Global High-resolution Thermospheric Imaging): Built by the Naval Research Laboratory in Washington, D.C., to observe the temperature and speed of the neutral atmosphere. There are two identical MIGHTI instruments onboard ICON.

2 IVMs (Ion Velocity Meter): Built by the University of Texas at Dallas to observe the speed of the charged particle motions, in response to the push of the high-altitude winds and the electric fields they generate. ICON carries two, and they are the mission’s only in situ instruments.  

EUV (Extreme Ultra-Violet instrument): Built by the University of California, Berkeley to capture images of oxygen glowing in the upper atmosphere, in order to measure the height and density of the daytime ionosphere.

FUV (Far Ultra-Violet instrument): Built by UC Berkeley to capture images of the upper atmosphere in the far ultraviolet light range. At night, FUV measures the density of the ionosphere, tracking how it responds to weather in the lower atmosphere. During the day, FUV measures changes in the chemistry of the upper atmosphere — the source for the charged gases found higher up in space.

360 miles above Earth

ICON orbits about 360 miles above Earth, near the upper reaches of the ionosphere — the region of Earth's atmosphere populated by electrically charged particles. From this vantage point, ICON combines remote measurements looking down along with direct measurements of the material flowing around it to connect changes throughout this region.

image

2 missions working together

NASA's GOLD mission — short for Global-scale Observations of the Limb and Disk — launched aboard a commercial communications satellite on Jan. 25, 2018. From its vantage point in geostationary orbit over Brazil, GOLD gets a full-disk view of the same region of space that ICON studies, helping scientists connect the big picture with the details.

1 gigabit of data per day

Together, ICON's instruments produce and downlink about 1 gigabit of data per day — about 125 megabytes. This adds up to about 1 gigabyte per week. ICON produces 10 different data products, ranging from measurements of wind speeds and ionospheric density to more complex models, that will help scientists shed new light on this ever-changing region.

ICON’s launch is scheduled for 4 a.m. EDT on Oct. 26, and NASA TV coverage begins at 3:45 a.m. Stay tuned on Twitter and Facebook for the latest on ICON. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
3 years ago

From Seed to Market: How NASA brings food to the table

Did you know we help farmers grow some of your favorite fruits, veggies and grains?

Our Earth-observing satellites track rainfall amounts, soil moisture, crop health, and more. On the ground, we partner with agencies and organizations around the world to help farmers use that data to care for their fields.

Here are a few ways we help put food on the table, from planting to harvest.

Planting

From Seed To Market: How NASA Brings Food To The Table

Did you plant seeds in science class to watch them sprout and grow? They all needed water, right? Our data helps farmers “see” how moist the soil is across large fields.

“When you’re not sure when to water your flowers or your garden, you can look at the soil or touch it with your hands. We are sort of ‘feeling’ the soil, sensing how much water is in the soil – from a satellite,

685 kilometers (408 miles) above Earth,” said John Bolten, the associate program manager of water resources for NASA’s Applied Sciences Program.

This spring, we worked with the U.S. Department of Agriculture and George Mason University to release Crop-CASMA, a tool that shows soil moisture and vegetation conditions for the United States. Able to see smaller areas – about the size of a couple of golf courses – the USDA uses Crop-CASMA to help update farmers on their state’s soil moisture, crop health and growing progress.

Growing

From Seed To Market: How NASA Brings Food To The Table

It’s dangerous being a seedling.

Heavy spring rains or summer storms can flood fields and drown growing plants. Dry spells and droughts can starve them of nutrients. Insects and hail can damage them. Farmers need to keep a close eye on plants during the spring and summer months. Our data and programs help them do that.

From Seed To Market: How NASA Brings Food To The Table

For example, in California, irrigation is essential for agriculture. California’s Central Valley annually produces more than 250 types of crops and is one of the most productive agricultural regions in the country – but it’s dry. Some parts only get 6 inches of rain per year.

To help, Landsat data powers CropManage – an app that tells farmers how long to irrigate their fields, based on soil conditions and evapotranspiration, or how much water plants are releasing into the atmosphere. The warmer and drier the atmosphere, the more plants “sweat” and lose water that needs to be replenished. Knowing how long to irrigate helps farmers conserve water and be more efficient. In years like 2021, intense droughts can make water management especially critical.

Harvest

Leading up to harvest, farmers need to know their expected yields – and profits.

GEOGLAM, or the Group on Earth Observations Global Agricultural Monitoring Initiative, is a partnership between NASA Harvest, USDA’s Foreign Agricultural Service (FAS) and other global agencies to track and report on crop conditions around the world.

USDA FAS is one of the main users of a soil moisture measurement product developed by Bolten and his team at our NASA Goddard Space Flight Center to drive their crop forecasting system.

If you’re interested in more ways we support agriculture, stay tuned over the next few weeks to learn more about how satellites (and scientists) help put snacks on your table!

Make sure to follow us on Tumblr for your regular dose of space!


Tags
Loading...
End of content
No more pages to load
  • oihvgci
    oihvgci liked this · 1 year ago
  • cozy-queen-of-hats
    cozy-queen-of-hats liked this · 1 year ago
  • r4dicalnihilism
    r4dicalnihilism reblogged this · 2 years ago
  • r4dicalnihilism
    r4dicalnihilism liked this · 2 years ago
  • silvermorning
    silvermorning liked this · 2 years ago
  • stuck-in-the-middle
    stuck-in-the-middle liked this · 2 years ago
  • capillarhian
    capillarhian liked this · 2 years ago
  • werewolf2000boy
    werewolf2000boy liked this · 2 years ago
  • hayesspd321
    hayesspd321 reblogged this · 3 years ago
  • hayesspd321
    hayesspd321 liked this · 3 years ago
  • cliffsteele
    cliffsteele reblogged this · 3 years ago
  • grotesqueangels
    grotesqueangels liked this · 3 years ago
  • whiteeyes-is-a-mad-scientist
    whiteeyes-is-a-mad-scientist liked this · 3 years ago
  • bogwitch-extraordinaire
    bogwitch-extraordinaire liked this · 3 years ago
  • spaceconveyor
    spaceconveyor reblogged this · 3 years ago
  • catsandschrodinger
    catsandschrodinger liked this · 3 years ago
  • ferociousqueak
    ferociousqueak reblogged this · 3 years ago
  • ferociousqueak
    ferociousqueak liked this · 3 years ago
  • fourthage
    fourthage reblogged this · 3 years ago
  • vi-pe-r-gt
    vi-pe-r-gt liked this · 3 years ago
  • almighty-irken-invader-zim
    almighty-irken-invader-zim liked this · 3 years ago
  • fourthage
    fourthage liked this · 3 years ago
  • eirstohter
    eirstohter reblogged this · 3 years ago
  • vlcardo
    vlcardo reblogged this · 3 years ago
  • toastytune
    toastytune liked this · 3 years ago
  • rachelcatmeow
    rachelcatmeow reblogged this · 3 years ago
  • otherid
    otherid reblogged this · 3 years ago
  • stairwell-flowers
    stairwell-flowers liked this · 3 years ago
  • severelymagnificentbird
    severelymagnificentbird liked this · 3 years ago
  • strawberriedlover
    strawberriedlover liked this · 3 years ago
  • virtualquilt
    virtualquilt liked this · 3 years ago
  • possessed-papi
    possessed-papi liked this · 3 years ago
  • lady-moonarch
    lady-moonarch liked this · 4 years ago
  • nlockett
    nlockett reblogged this · 4 years ago
  • nlockett
    nlockett liked this · 4 years ago
  • artistlearningsstuff
    artistlearningsstuff liked this · 4 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags