Discover NASA Technology In Your Life

Discover NASA Technology in Your Life

Have you ever wondered how space exploration impacts you? “Spinoffs” are products and services developed from NASA technology or improved through NASA partnerships. These innovations—first created to help explore space and study Earth—are responsible for billions of dollars in both revenue and saved costs, tens of thousands of jobs created, and for changing the world around us.

Our NASA Home & City interactive web platform allows you to explore some of the spinoff technologies you can find in your everyday life, demonstrating the wider benefits of America’s investments in its space program.

image

Here are the seven most unexpected items you can find in your homes and cities which were “spun off” from technologies to enable the study and exploration of space.

1. Wireless Headsets

“That’s one small step for man, one giant leap for mankind.” On July 20, 1969, millions were glued to their television sets when NASA astronaut Neil Armstrong offered these famous words via live broadcast, upon becoming the first man to ever step foot on the Moon. This historic transmission was delivered from Armstrong’s headset to the headsets of Mission Control personnel at NASA, and then on to the world.

Improved by the technology that carried Neil Armstrong’s words, more compact and comfortable headsets were developed for airline pilots in the 1960s and '70s. Today those advancements continue to evolve in all forms of communications and telephone equipment. Mobile headsets provide greater efficiency and flexibility for everyone from professionals to video gamers.

image

2. Water Quality Monitoring

On the International Space Station very little goes to waste. This includes water, which is recovered from every possible source, cleaned and recycled.

Following our development of a simplified bacteria test for water quality on the space station, one engineer created a foundation to distribute test kits suitable for use in rural communities around the world. Water contamination is still a major problem in many places, and the test helps local communities and governments obtain and share water quality data using a smartphone app.

3. Skin Cream

We know that on Earth, gravity is a constant. For astronauts in orbit, however, it’s a different story—and according to a scientist at NASA's Johnson Space Center, studying what happens to bodies in microgravity “can lead to significant new discoveries in human biology for the benefit of humankind.”

As our researchers experimented with replicating microgravity conditions in the lab, they invented a bioreactor that could help simulate conditions that human cells experience in a space-like environment. This allowed them to perform tissue-growth experiments on the ground and in space, and eventually, to consider the question of how to protect human cells from the toxic effects of long-duration space missions.

Now, thanks to this NASA-patented bioreactor, one company uses agents from human cells that produce collagen to enrich its skin cream products. Lab tests have shown the rejuvenating cream to increase skin moisture content by 76 percent and reduce darkness and wrinkles by more than 50 percent.

image

4. Acoustic Guitars

From its start, NASA has innovated in all branches of aeronautics, which has led to numerous advances in helicopters, including ways to limit vibrations as they fly and advanced composites to build tougher, safer vehicles. 

An industrious helicopter manufacturer that built up its expertise with NASA contracts later used the same special vibration analysis equipment to enhance the sound of acoustic guitars. The company also built the body out of a fiberglass composite used for rotor blades. The resulting instruments are stronger and less expensive to produce than those of traditional rosewood and produce a rich, full sound.

image

5. Tiny [Mobile] Homes

While the International Space Station is the largest spacecraft ever flown—it's about the size of a football field—living and working space for astronauts is still at a premium. NASA created a studio called the Habitability Design Center to experiment with the interior design of spacecraft to maximize usable space and make scientific research as efficient and effective as possible.

An architect who helped NASA design the interior of the International Space Station launched a company specializing in compact trailers for camping and exploration. Suitable for a full hookup campsite or going completely off-grid, the company's flagship trailer can accommodate two adults and two children for sleeping and can be customized with a range of features including a shower, refrigerator, toilet, and more. And it all fits into a unit light enough to be towed by a four-cylinder car.

image

6. Blue Light Blocking Ski Goggles

Skiers and snowboarders face extremely bright sunlight, especially when it's reflected off the white snow. That can make it hard to see, and not just because of glare. The blue in sunlight makes it more difficult to discern colors at the edge of the visible light spectrum, like reds. A NASA-designed filter used in snow goggles helps block up to 95 percent of blue light, making it easier for people on the slopes to see the terrain clearly.

image

7. Implants for the Hearing Impaired

Hearing aids, which make sound louder, can only do so much for those who were born or have become deaf. Cochlear implants work in a completely different way, converting sound into digital signals that can be processed by the brain.  And the technology traces back in part to a NASA space shuttle engineer who used skills in electronics instrumentation and his own experiences with hearing loss to develop an early version of the life-changing device.

image

These are just a few examples of thousands of NASA Spinoff and dual-purpose technologies benefiting the world around us. 

Trace space back to you and visit NASA Home and City today!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

More Posts from Nasa and Others

5 years ago
NASA Spotlight: Astronaut Jonny Kim

NASA Spotlight: Astronaut Jonny Kim

Dr. Jonny Kim was selected by NASA to join the 2017 Astronaut Candidate Class. He reported for duty in August 2017 and having completed the initial astronaut candidate training is now eligible for mission assignments to the International Space Station, the Moon and eventually Mars. A U.S. Navy SEAL, Kim completed more than 100 combat operations. Kim was commissioned as a naval officer through an enlisted-to-officer program and earned his degree in mathematics at the University of San Diego and a doctorate of medicine at Harvard Medical School. Born and raised in Los Angeles, California to Korean-American immigrants, he enjoys spending time with his family, outdoor activities, academic and professional mentoring, strength training and lifelong learning. 

Dr. Kim took some time from his job as a NASA astronaut to answer questions about his life and career! Enjoy: 

Why did you apply to be an astronaut?

For many reasons. I think that humans are natural explorers. There is a calling in all of us to explore the unknown, push the boundaries and redefine what is possible. I’m drawn to the physical and mental challenges of space exploration and the teamwork required to complete such an objective. And finally, the opportunity to do something good for our country, for humanity, and to inspire the next generation of thinkers, leaders, explorers and scientists.

What was your favorite memory from astronaut training?

image

I’m a big believer that people can grow stronger bonds with each other when they succeed through shared hardship. And I think that developing relationships with one another is one of the best ways to forge successful team skills to be successful in any endeavor. With that context, I can tell you that my favorite memory from astronaut training was traversing the deep canyon slots of the Utah Canyon Lands for almost 2 weeks with my classmates. We hiked trails, climbed canyons, swam through deep, dark, cold and murky waters and forged through uncertainty, all while being together. This shared hardship was not only fun, but it helped us grow closer to one another. It’s one of the fondest memories I have when I think about my amazing classmates, and through that shared hardship, I know I can count on any one of my fellow astronauts when the going gets tough.

If you could play any song during launch, what would it be?

Don’t Stop Believin’ by Journey.

What advice would you give to your younger self?

I would tell myself to always follow your passion, never stature or money, because following a life of passion is long-term, sustainable and usually helps others. Be accountable for your mistakes and failures, and maintain the humility to learn from those mistakes and failures. And finally, I would caution myself that all worthwhile goals are difficult to obtain, but with the right attitude and hard work, you can accomplish anything.

How did your time as a Navy Seal impact your astronaut training?

image

Being a Naval Special Warfare Operator taught me that humans are capable of accomplishing ten times what their bodies and mind tell them. I learned there are no limits in life, and the biggest setback one can have is a poor attitude. I learned the value of strong leadership and accountability. I also learned the meaning of sacrifice, hardship, teamwork, love and compassion. All these traits helped me to develop the hard and soft skills required to be an astronaut.

How do we prepare medically for long duration missions? What tools, resources, medications do we anticipate needing, and how do we figure that out?

This is a great question and the answer is evolving. The way we answer this question is by being thoughtful and consulting the medical communities to weigh the pros and cons of every single decision we make regarding this. Mass plays an important factor, so we have to be mindful of everything we bring and how we train for it.

Who was the first person you called after being selected to be an astronaut?

image

It would have been my wife but she was with me when I heard the news. The first person I called was my mom.

What is one item from home that you would bring to space?

A picture of my wife and kids.

What does it mean to you to be part of the Artemis generation of astronauts?

NASA Spotlight: Astronaut Jonny Kim

It means that I have a duty and obligation to serve humanity’s best interests. To explore the unknown, push boundaries and redefine what’s possible. It means I have an immense opportunity to serve as an example and inspiration to our next generation of leaders and explorers. It also means there is a hard road ahead, and when the mission calls for us, we will be ready.

What are three personal items, besides photos of family and friends, that you would bring with you on your first spaceflight?

An automatic watch, because the engineering behind a timepiece is a beautiful thing. An American flag, because I proudly believe and uphold the principles and ideals our country stands for. And finally, a nice journal that I can put handwritten thoughts on.

Thank you for your time, and good luck on your first spaceflight assignment!

Follow Jonny Kim on Twitter and Instagram to keep up with his life as NASA astronaut. 

It’s not too late to APPLY to #BeAnAstronaut! Applications close TOMORROW, March 31. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago
Hi! The Sun Is So Bright I Need Shades... That Are ISO 12312-2 Compliant! So Glad That You Are All Here

Hi! The Sun is so bright I need shades... that are ISO 12312-2 compliant! So glad that you are all here and excited about the eclipse. I’m Alexa Halford and ready to answer your questions. 


Tags
7 years ago

100 Days in Houston

A lot can happen in 100 days...

At our Johnson Space Center, located in Houston, it has been busy since July 10. Here are six things that have been going on in Houston with our astronauts, the International Space Station and our next great telescope! Take a look:

1. Our James Webb Space Telescope is Spending 100 Days in a Freezing Cold Chamber

Imagine seeing 13.5 billion light-years back in time, watching the birth of the first stars, galaxies evolve and solar systems form…our James Webb Space Telescope will do just that once it launches in 2019.

image

Webb will be the premier observatory of the next decade, studying every phase in the cosmic history of our universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems.

On July 10, the Webb telescope entered Johnson Space Center’s historic Chamber A for its final cryogenic test that lasts about 100 days behind a closed giant vault-like door. 

Why did we put Webb in this freezing cold chamber? To ensure it can withstand the harsh environment it will experience in space.

image

The telescope has been in a space-like environment in the chamber, tested at cryogenic temperatures. In space, the telescope must operate at extremely cold temperatures so that it can detect infrared light – heat radiation -- from faint, distant objects. 

image

To keep the telescope cold while in space, Webb has a sunshield the size of a tennis court, which blocks sunlight (as well as reflected light from the Earth and Moon). This means that the sun-facing side of the observatory is incredibly hot while the telescope-side remains at sub-freezing temperatures.

2. Our 12 new astronaut candidates reported to Houston to start training

image

Our newest class of astronaut candidates, which were announced on June 7, reported for training on August 13. These candidates will train for two years on International Space Station systems, space vehicles and Russian language, among many other skills, before being flight-ready. 

3. Our Mission Control Center operated for 2,400 hours

image

While astronauts are in space, Mission Control operates around the clock making sure the crew is safe and the International Space Station is functioning properly. This means workers in Mission Control work in three shifts, 7 a.m. – 4 p.m., 3 p.m. – midnight and 11 p.m. – 8 a.m. This includes holidays and weekends. Day or night, Mission Control is up and running.

4. Key Teams at Johnson Space Center Continued Critical Operations During Hurricane Harvey

image

Although Johnson Space Center closed during Hurricane Harvey, key team members and critical personnel stayed onsite to ensure crucial operations would continue. Mission Control remained in operation throughout this period, as well as all backup systems required to maintain the James Webb Space Telescope, which is at Johnson for testing, were checked prior to the arrival of the storm, and were ready for use if necessary.

5. Crews on the International Space Station conducted hundreds of science experiments.

image

Mission Control at Johnson Space Center supported astronauts on board the International Space Station as they worked their typical schedule in the microgravity environment. Crew members work about 10 hours a day conducting science research that benefits life on Earth as well as prepares us for travel deeper into space. 

image

The space station team in Houston supported a rigorous schedule of launches of cargo that included supplies and science materials for the crew living and working in the orbiting laboratory, launched there by our commercial partners. 

6. Two new crews blasted off to space and a record breaking astronaut returned from a stay on space station

image

Houston is home to the Astronaut Corps, some of whom end up going out-of-this-world. On July 28, NASA Astronaut Randy Bresnik launched to the International Space Station alongside Italian astronaut Paolo Naspoli and Russian cosmonaut Sergey Ryazanskiy. Joining them at the International Space Station were NASA Astronauts Joe Acaba and Mark Vande Hei who launched September 12 with Russian cosmonaut Alexander Misurkin.

image

When NASA Astronaut Peggy Whitson landed with crewmates Jack Fischer of NASA and Fyoder Yurchikhin of Roscosmos, she broke the record for the most cumulative time in space by a U.S. astronaut. She landed with over 650 days of cumulative flight time and more than 53 hours of spacewalk time. Upon her return, the Human Research Program in Houston studies her health and how the human body adapted to her time in space.

Learn more about the Johnson Space Center online, or on Facebook, Twitter or Instagram.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Black Holes are NICER Than You Think!

We’re learning more every day about black holes thanks to one of the instruments aboard the International Space Station! Our Neutron star Interior Composition Explorer (NICER) instrument is keeping an eye on some of the most mysterious cosmic phenomena.

image

We’re going to talk about some of the amazing new things NICER is showing us about black holes. But first, let’s talk about black holes — how do they work, and where do they come from? There are two important types of black holes we’ll talk about here: stellar and supermassive. Stellar mass black holes are three to dozens of times as massive as our Sun while supermassive black holes can be billions of times as massive!

image

Stellar black holes begin with a bang — literally! They are one of the possible objects left over after a large star dies in a supernova explosion. Scientists think there are as many as a billion stellar mass black holes in our Milky Way galaxy alone!

Supermassive black holes have remained rather mysterious in comparison. Data suggest that supermassive black holes could be created when multiple black holes merge and make a bigger one. Or that these black holes formed during the early stages of galaxy formation, born when massive clouds of gas collapsed billions of years ago. There is very strong evidence that a supermassive black hole lies at the center of all large galaxies, as in our Milky Way.

image

Imagine an object 10 times more massive than the Sun squeezed into a sphere approximately the diameter of New York City — or cramming a billion trillion people into a car! These two examples give a sense of how incredibly compact and dense black holes can be.

Because so much stuff is squished into such a relatively small volume, a black hole’s gravity is strong enough that nothing — not even light — can escape from it. But if light can’t escape a dark fate when it encounters a black hole, how can we “see” black holes?

image

Scientists can’t observe black holes directly, because light can’t escape to bring us information about what’s going on inside them. Instead, they detect the presence of black holes indirectly — by looking for their effects on the cosmic objects around them. We see stars orbiting something massive but invisible to our telescopes, or even disappearing entirely!

When a star approaches a black hole’s event horizon — the point of no return — it’s torn apart. A technical term for this is “spaghettification” — we’re not kidding! Cosmic objects that go through the process of spaghettification become vertically stretched and horizontally compressed into thin, long shapes like noodles.

image

Scientists can also look for accretion disks when searching for black holes. These disks are relatively flat sheets of gas and dust that surround a cosmic object such as a star or black hole. The material in the disk swirls around and around, until it falls into the black hole. And because of the friction created by the constant movement, the material becomes super hot and emits light, including X-rays.  

At last — light! Different wavelengths of light coming from accretion disks are something we can see with our instruments. This reveals important information about black holes, even though we can’t see them directly.

image

So what has NICER helped us learn about black holes? One of the objects this instrument has studied during its time aboard the International Space Station is the ever-so-forgettably-named black hole GRS 1915+105, which lies nearly 36,000 light-years — or 200 million billion miles — away, in the direction of the constellation Aquila.

Scientists have found disk winds — fast streams of gas created by heat or pressure — near this black hole. Disk winds are pretty peculiar, and we still have a lot of questions about them. Where do they come from? And do they change the shape of the accretion disk?

image

It’s been difficult to answer these questions, but NICER is more sensitive than previous missions designed to return similar science data. Plus NICER often looks at GRS 1915+105 so it can see changes over time.

NICER’s observations of GRS 1915+105 have provided astronomers a prime example of disk wind patterns, allowing scientists to construct models that can help us better understand how accretion disks and their outflows around black holes work.

image

NICER has also collected data on a stellar mass black hole with another long name — MAXI J1535-571 (we can call it J1535 for short) — adding to information provided by NuSTAR, Chandra, and MAXI. Even though these are all X-ray detectors, their observations tell us something slightly different about J1535, complementing each other’s data!

This rapidly spinning black hole is part of a binary system, slurping material off its partner, a star. A thin halo of hot gas above the disk illuminates the accretion disk and causes it to glow in X-ray light, which reveals still more information about the shape, temperature, and even the chemical content of the disk. And it turns out that J1535’s disk may be warped!

image

Image courtesy of NRAO/AUI and Artist: John Kagaya (Hoshi No Techou)

This isn’t the first time we have seen evidence for a warped disk, but J1535’s disk can help us learn more about stellar black holes in binary systems, such as how they feed off their companions and how the accretion disks around black holes are structured.

NICER primarily studies neutron stars — it’s in the name! These are lighter-weight relatives of black holes that can be formed when stars explode. But NICER is also changing what we know about many types of X-ray sources. Thanks to NICER’s efforts, we are one step closer to a complete picture of black holes. And hey, that’s pretty nice!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago

5 Signs You Might Be Ready to Apply to be an Astronaut

Did you hear? Astronaut applications are open! Here are a few signs that might mean you’re ready to apply:

1. You Don’t Mind Having Roommates

5 Signs You Might Be Ready To Apply To Be An Astronaut

When you’re an astronaut, you have to work and live with your crew mates for extended periods of time. It’s important to the mission and your safety that everyone can collaborate and work together.

2. You LOVE Space

image

If the Milky Way, planets and space travel doesn’t excite you then this might not be the perfect job for you. But if you love galaxies, space station research and deep space exploration, then maybe you should take a look at our application.

3. Adventure Doesn’t Scare You

image

Being an astronaut means that you get to take part in adventures that most people will never experience. Imagine: sitting on the launch pad in the Orion spacecraft, atop a rocket that’s getting ready to launch. You’ll travel farther into space than any other humans have been and help push the boundaries of technology in the proving ground of deep space lunar orbits, leading the way for future missions to Mars.

4. You Want to be on the Cutting Edge of Science

image

Not only do astronauts get to travel to space, but they also get to conduct really cool research in microgravity. Did you know that right now they’re growing Zinnia flowers on the International Space Station? This research could help with our future deep space exploration and could teach us a few things about growing plants on Earth. Learn more about all the awesome research on the space station HERE.

5. You’re Not Afraid of Heights

5 Signs You Might Be Ready To Apply To Be An Astronaut

One of the coolest things about being an astronaut, is that you get to go to SPACE! At the very least, you’ll travel to the International Space Station, which is 250 miles above Earth. Or, you could be one of the first astronauts to travel to a distant asteroid or even Mars!

Interested in applying to become an astronaut? You’re in luck, applications open Dec. 14! Learn about some common myths about becoming an astronaut HERE.

Apply to be one of our astronauts HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Urban Growth of New Delhi

image

The capital of India, New Delhi, has been experiencing one of the fastest urban expansions in the world. Vast areas of croplands and grasslands are being turned into streets, buildings, and parking lots, attracting an unprecedented amount of new residents. By 2050, the United Nations projects India will add 400 million urban dwellers, which would be the largest urban migration in the world for the thirty-two year period.

These images show the growth in the city of New Delhi and its adjacent areas—a territory collectively known as Delhi—from December 5, 1989 to June 5, 2018. 

Most of the expansion in Delhi has occurred on the peripheries of New Delhi, as rural areas have become more urban. The geographic size of Delhi has almost doubled from 1991 to 2011, with the number of urban households doubling while the number of rural houses declined by half. Cities outside of Delhi—Bahadurgarh, Ghaziabad, Noida, Faridabad, and Gurugram—have also experienced urban growth over the past three decades, as shown in these images.

Read more: https://go.nasa.gov/2y32G7h

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

How Humans Change Space Itself

It’s no surprise that humans influence the surface of our planet, but our reach can go farther than that. Humans affect space, too.

image

We know storms from the sun can naturally change the space environment around Earth, which can have an impact on satellites and power grids.

image

Scientists now know that Cold War era nuclear tests in the 1950s caused similar effects.

Particles around Earth are organized into layers known as radiation belts. These 1950s tests created a temporary extra layer of radiation closer to Earth. 

image

The effects of this could be seen all around the world. Aurora appeared at the equator instead of the poles, utility grids in Hawaii were strained, and in some cases, satellites above test sites were affected. 

image

Some types of communications signals can also affect Earth’s radiation belts. 

Very low-frequency waves, or VLFs, are used for radio communications. They are often used to communicate with submarines, because these waves can penetrate deep into the ocean. 

image

The waves can also travel far into the space environment around Earth. When these waves are in space, they affect how high-energy particles move, creating a barrier against natural radiation.

image

The outer edge of this radio-wave barrier corresponds almost exactly the inner edge of Earth’s natural radiation belts – meaning it could be human activity that at least partly shapes this natural radiation around Earth.  

image

For more NASA sun and space research, visit www.nasa.gov/sunearth and follow us on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

These 9 Companies Could Help Us Send the Next Robotic Landers to the Moon

We sent the first humans to land on the Moon in 1969. Since then, only of 12 men have stepped foot on the lunar surface – but we left robotic explorers behind to continue gathering science data. And now, we’re preparing to return. Establishing a sustained presence on and near the Moon will help us learn to live off of our home planet and prepare for travel to Mars.

image

To help establish ourselves on and near the Moon, we are working with a few select American companies. We will buy space on commercial robotic landers, along with other customers, to deliver our payloads to the lunar surface. We’re even developing lunar instruments and tools that will fly on missions as early as 2019!

image

Through partnerships with American companies, we are leading a flexible and sustainable approach to deep space missions. These early commercial delivery missions will also help inform new space systems we build to send humans to the Moon in the next decade. Involving American companies and stimulating the space market with these new opportunities to send science instruments and new technologies to deep space will be similar to how we use companies like Northrop Grumman and SpaceX to send cargo to the International Space Station now. These selected companies will provide a rocket and cargo space on their robotic landers for us (and others!) to send science and technology to our nearest neighbor.

So who are these companies that will get to ferry science instruments and new technologies to the Moon?

Here’s a digital “catalogue” of the organizations and their spacecraft that will be available for lunar services over the next decade:

Astrobotic Technology, Inc.

Pittsburg, PA

image

Deep Space Systems

Littleton, CO

image

Firefly Aerospace, Inc.

Cedar Park, TX

image

Intuitive Machines, LLC

Houston, TX

image

Lockheed Martin Space

Littleton, CO

image

Masten Space Systems, Inc.

Mojave, CA

image

Moon Express, Inc.

Cape Canaveral, FL

image

Orbit Beyond, Inc.

Edison, NJ

image

Draper, Inc.

Cambridge, MA

image

We are thrilled to be working with these companies to enable us to investigate the Moon in new ways. In order to expand humanity’s presence beyond Earth, we need to return to the Moon before we go to Mars.

The Moon helps us to learn how to live and work on another planetary body while being only three days away from home – instead of several months. The Moon also holds enormous potential for testing new technologies, like prospecting for water ice and turning it into drinking water, oxygen and rocket fuel. Plus, there’s so much science to be done!

image

The Moon can help us understand the early history of the solar system, how planets migrated to their current formation and much more. Understanding how the Earth-Moon system formed is difficult because those ancient rocks no longer exist here on Earth. They have been recycled by plate tectonics, but the Moon still has rocks that date back to the time of its formation! It’s like traveling to a cosmic time machine!

Join us on this exciting journey as we expand humanity’s presence beyond Earth.

Learn more about the Moon and all the surprises it may hold: https://moon.nasa.gov

Find out more about today’s announcement HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Webb 101: 10 Facts about the James Webb Space Telescope

Did you know…?

image

1. Our upcoming James Webb Space Telescope will act like a powerful time machine – because it will capture light that’s been traveling across space for as long as 13.5 billion years, when the first stars and galaxies were formed out of the darkness of the early universe.

image

2. Webb will be able to see infrared light. This is light that is just outside the visible spectrum, and just outside of what we can see with our human eyes.

image

3. Webb’s unprecedented sensitivity to infrared light will help astronomers to compare the faintest, earliest galaxies to today's grand spirals and ellipticals, helping us to understand how galaxies assemble over billions of years.

image

Hubble’s infrared look at the Horsehead Nebula. Credit: NASA/ESA/Hubble Heritage Team

4. Webb will be able to see right through and into massive clouds of dust that are opaque to visible-light observatories like the Hubble Space Telescope. Inside those clouds are where stars and planetary systems are born.

image

5. In addition to seeing things inside our own solar system, Webb will tell us more about the atmospheres of planets orbiting other stars, and perhaps even find the building blocks of life elsewhere in the universe.

image

Credit: Northrop Grumman

6. Webb will orbit the Sun a million miles away from Earth, at the place called the second Lagrange point. (L2 is four times further away than the moon!)

image

7. To preserve Webb’s heat sensitive vision, it has a ‘sunshield’ that’s the size of a tennis court; it gives the telescope the equivalent of SPF protection of 1 million! The sunshield also reduces the temperature between the hot and cold side of the spacecraft by almost 600 degrees Fahrenheit.

image

8.  Webb’s 18-segment primary mirror is over 6 times bigger in area than Hubble's and will be ~100x more powerful. (How big is it? 6.5 meters in diameter.)

image

9.  Webb’s 18 primary mirror segments can each be individually adjusted to work as one massive mirror. They’re covered with a golf ball's worth of gold, which optimizes them for reflecting infrared light (the coating is so thin that a human hair is 1,000 times thicker!).

image

10. Webb will be so sensitive, it could detect the heat signature of a bumblebee at the distance of the moon, and can see details the size of a US penny at the distance of about 40 km.

image

BONUS!  Over 1,200 scientists, engineers and technicians from 14 countries (and more than 27 U.S. states) have taken part in designing and building Webb. The entire project is a joint mission between NASA and the European and Canadian Space Agencies. The telescope part of the observatory was assembled in the world’s largest cleanroom at our Goddard Space Flight Center in Maryland.

Webb is currently at Northrop Grumman where the telescope will be mated with the spacecraft and undergo final testing. Once complete, Webb will be packed up and be transported via boat to its launch site in French Guiana, where a European Space Agency Ariane 5 rocket will take it into space.

image

Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago
Ever Want To Ask A Real Life Astronaut A Question? Here’s Your Chance!

Ever want to ask a real life astronaut a question? Here’s your chance!

Astronauts Drew Feustel & Ricky Arnold will be taking your questions in a Video Answer Time session. We’ll collect your questions and send them to space to be answered by the astronauts on Friday, May 18. We’ll record their answers and post them on Wednesday, May 23 here on NASA’s Tumblr. Make sure to ask your question now by visiting http://nasa.tumblr.com/ask!

Andrew J. Feustel was selected by NASA in 2000.  He has been assigned to Expedition 55/56, which launched in March 2018. The Lake Orion, Michigan native has a Ph.D. in the Geological Sciences, specializing in Seismology, and is a veteran of two spaceflights. Follow Feustel on Twitter and Instagram.

Richard R. Arnold II was selected as an astronaut by NASA in May 2004. The Maryland native worked in the marine sciences and as a teacher in his home state, as well as in countries such as Morocco, Saudi Arabia, and Indonesia. Follow Arnold on Twitter and Instagram.

And don’t forget to submit your questions by 5 p.m. EDT on Tuesday, May 15 at http://nasa.tumblr.com/ask!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
Loading...
End of content
No more pages to load
  • iamshavanaksarkar-blog
    iamshavanaksarkar-blog liked this · 5 years ago
  • helloiamgarima-blog
    helloiamgarima-blog reblogged this · 5 years ago
  • ashleychristina73
    ashleychristina73 liked this · 6 years ago
  • themissdreamingstories
    themissdreamingstories liked this · 6 years ago
  • ortega199335-blog
    ortega199335-blog liked this · 6 years ago
  • emerald-ar
    emerald-ar liked this · 6 years ago
  • sodomizingjack
    sodomizingjack liked this · 6 years ago
  • late4f8
    late4f8 reblogged this · 6 years ago
  • petrichorandbooks
    petrichorandbooks liked this · 6 years ago
  • disabled-witch-caribbean-bitch
    disabled-witch-caribbean-bitch reblogged this · 6 years ago
  • latebloomer215
    latebloomer215 liked this · 6 years ago
  • eigwayne
    eigwayne reblogged this · 6 years ago
  • iwishwithallmyheart
    iwishwithallmyheart liked this · 6 years ago
  • ephimerereality
    ephimerereality liked this · 6 years ago
  • verner2
    verner2 reblogged this · 6 years ago
  • astra-peraspera
    astra-peraspera reblogged this · 6 years ago
  • miniyelia
    miniyelia liked this · 6 years ago
  • modersatan-blog
    modersatan-blog liked this · 6 years ago
  • cara-linea
    cara-linea reblogged this · 6 years ago
  • chikasmania
    chikasmania liked this · 6 years ago
  • starsaremymuse
    starsaremymuse reblogged this · 6 years ago
  • seventhpaw
    seventhpaw reblogged this · 6 years ago
  • littleplasticspaceship
    littleplasticspaceship reblogged this · 6 years ago
  • gentianablue
    gentianablue reblogged this · 6 years ago
  • theindependentconservative
    theindependentconservative liked this · 6 years ago
  • seasonallydefective
    seasonallydefective reblogged this · 6 years ago
  • seasonallydefective
    seasonallydefective liked this · 6 years ago
  • a-wandering-fool
    a-wandering-fool reblogged this · 6 years ago
  • something-renewed
    something-renewed liked this · 6 years ago
  • lipscome754
    lipscome754 liked this · 6 years ago
  • emmaseasall
    emmaseasall liked this · 6 years ago
  • omghellolovely
    omghellolovely reblogged this · 6 years ago
  • ilovemytransgenderchild
    ilovemytransgenderchild reblogged this · 6 years ago
  • 6stronghands
    6stronghands liked this · 6 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags