10 Things To Know About Parker Solar Probe

10 Things to Know About Parker Solar Probe

On Aug. 12, 2018, we launched Parker Solar Probe to the Sun, where it will fly closer than any spacecraft before and uncover new secrets about our star. Here's what you need to know.

image

1. Getting to the Sun takes a lot of power

At about 1,400 pounds, Parker Solar Probe is relatively light for a spacecraft, but it launched to space aboard one of the most powerful rockets in the world, the United Launch Alliance Delta IV Heavy. That's because it takes a lot of energy to go to the Sun — in fact, 55 times more energy than it takes to go to Mars.

Any object launched from Earth starts out traveling at about the same speed and in the same direction as Earth — 67,000 mph sideways. To get close to the Sun, Parker Solar Probe has to shed much of that sideways speed, and a strong launch is good start.

image

2. First stop: Venus!

Parker Solar Probe is headed for the Sun, but it's flying by Venus along the way. This isn't to see the sights — Parker will perform a gravity assist at Venus to help draw its orbit closer to the Sun. Unlike most gravity assists, Parker will actually slow down, giving some orbital energy to Venus, so that it can swing closer to the Sun.

One's not enough, though. Parker Solar Probe will perform similar maneuvers six more times throughout its seven-year mission!

image

3. Closer to the Sun than ever before

At its closest approach toward the end of its seven-year prime mission, Parker Solar Probe will swoop within 3.83 million miles of the solar surface. That may sound pretty far, but think of it this way: If you put Earth and the Sun on opposite ends of an American football field, Parker Solar Probe would get within four yards of the Sun's end zone. The current record-holder was a spacecraft called Helios 2, which came within 27 million miles, or about the 30 yard line. Mercury orbits at about 36 million miles from the Sun.

This will place Parker well within the Sun's corona, a dynamic part of its atmosphere that scientists think holds the keys to understanding much of the Sun's activity.

image

4. Faster than any human-made object

Parker Solar Probe will also break the record for the fastest spacecraft in history. On its final orbits, closest to the Sun, the spacecraft will reach speeds up to 430,000 mph. That's fast enough to travel from New York to Tokyo in less than a minute!

image

5. Dr. Eugene Parker, mission namesake

Parker Solar Probe is named for Dr. Eugene Parker, the first person to predict the existence of the solar wind. In 1958, Parker developed a theory showing how the Sun’s hot corona — by then known to be millions of degrees Fahrenheit — is so hot that it overcomes the Sun’s gravity. According to the theory, the material in the corona expands continuously outwards in all directions, forming a solar wind.

This is the first NASA mission to be named for a living person, and Dr. Parker watched the launch with the mission team from Kennedy Space Center in Florida.

image

6. Unlocking the secrets of the solar wind

Even though Dr. Parker predicted the existence of the solar wind 60 years ago, there's a lot about it we still don't understand. We know now that the solar wind comes in two distinct streams, fast and slow. We've identified the source of the fast solar wind, but the slow solar wind is a bigger mystery.

Right now, our only measurements of the solar wind happen near Earth, after it has had tens of millions of miles to blur together, cool down and intermix. Parker's measurements of the solar wind, just a few million miles from the Sun's surface, will reveal new details that should help shed light on the processes that send it speeding out into space.

10 Things To Know About Parker Solar Probe

7. Studying near-light speed particles

Another question we hope to answer with Parker Solar Probe is how some particles can accelerate away from the Sun at mind-boggling speeds — more than half the speed of light, or upwards of 90,000 miles per second. These particles move so fast that they can reach Earth in under half an hour, so they can interfere with electronics on board satellites with very little warning.

image

8. The mystery of the corona's high heat

The third big question we hope to answer with this mission is something scientists call the coronal heating problem. Temperatures in the Sun's corona, where Parker Solar Probe will fly, spike upwards of 2 million degrees Fahrenheit, while the Sun's surface below simmers at a balmy 10,000 F. How the corona gets so much hotter than the surface remains one of the greatest unanswered questions in astrophysics.

Though scientists have been working on this problem for decades with measurements taken from afar, we hope measurements from within the corona itself will help us solve the coronal heating problem once and for all.

image

9. Why won't Parker Solar Probe melt?

The corona reaches millions of degrees Fahrenheit, so how can we send a spacecraft there without it melting?

The key lies in the distinction between heat and temperature. Temperature measures how fast particles are moving, while heat is the total amount of energy that they transfer. The corona is incredibly thin, and there are very few particles there to transfer energy — so while the particles are moving fast (high temperature), they don’t actually transfer much energy to the spacecraft (low heat).

It’s like the difference between putting your hand in a hot oven versus putting it in a pot of boiling water (don’t try this at home!). In the air of the oven, your hand doesn’t get nearly as hot as it would in the much denser water of the boiling pot.

image

10. Engineered to thrive in an extreme environment

Make no mistake, the environment in the Sun's atmosphere is extreme — hot, awash in radiation, and very far from home — but Parker Solar Probe is engineered to survive.

The spacecraft is outfitted with a cutting-edge heat shield made of a carbon composite foam sandwiched between two carbon plates. The heat shield is so good at its job that, even though the front side will receive the full brunt of the Sun's intense light, reaching 2,500 F, the instruments behind it, in its shadow, will remain at a cozy 85 F.

Even though Parker Solar Probe's solar panels — which provide the spacecraft's power — are retractable, even the small bit of surface area that peeks out near the Sun is enough to make them prone to overheating. So, to keep its cool, Parker Solar Probe circulates a single gallon of water through the solar arrays. The water absorbs heat as it passes behind the arrays, then radiates that heat out into space as it flows into the spacecraft’s radiator.

For much of its journey, Parker Solar Probe will be too far from home and too close to the Sun for us to command it in real time — but don't worry, Parker Solar Probe can think on its feet. Along the edges of the heat shield’s shadow are seven sensors. If any of these sensors detect sunlight, they alert the central computer and the spacecraft can correct its position to keep the sensors — and the rest of the instruments — safely protected behind the heat shield.

Read the web version of this week’s “Solar System: 10 Things to Know” article HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Nasa and Others

6 years ago

Glacier Turns into a ‘Snow Swamp’

In just four days this summer, miles of snow melted from Lowell Glacier in Canada. Mauri Pelto, a glaciologist at Nichols College, called the area of water-saturated snow a “snow swamp.”

image

These false-color images show the rapid snow melt in Kluane National Park in the Yukon Territory. The first image was taken on July 22, 2018, by the European Space Agency’s Sentinel-2; the next image was acquired on July 26, 2018, by the Landsat 8 satellite.

Ice is shown as light blue, while meltwater is dark blue. On July 26, the slush covered more than 25 square miles (40 square km).

During those four days, daily temperatures 40 miles (60 km) northeast of the glacier reached 84 degrees Fahrenheit (29 degrees Celsius) — much higher than normal for the region in July.

Read more: https://go.nasa.gov/2Q9JSeO

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

We’re On a Mission to Study The Zone Where Earth Meets Space!

We’re launching ICON — short for Ionospheric Connection Explorer — a mission to explore the dynamic region where Earth meets space: the ionosphere!

image

Earth’s ionosphere stretches from 50 to 400 miles above the ground, overlapping the top of our atmosphere and the very beginning of space. The Sun cooks gases there until they lose an electron (or two or three), creating a sea of electrically charged particles. But, the ionosphere also responds to weather patterns from Earth rippling up. These changes are complex and tricky to understand.

image

That’s why we’re launching ICON! Changes in the ionosphere can affect astronauts, satellites and communications signals we use every day, like radio or GPS. Understanding these changes could help us eventually predict them — and better protect our technology and explorers in space.

image

ICON will track changes in the ionosphere by surveying airglow. It’s a natural feature of Earth’s that causes our atmosphere to constantly glow. The Sun excites gases in the upper atmosphere, so they emit light. From 360 miles above Earth, ICON will photograph airglow to measure the ionosphere’s winds, composition and temperature. ICON also carries an instrument that will capture and measure the particles directly around the spacecraft.

image

ICON is scheduled to launch on Oct. 10, on a Northrop Grumman Pegasus XL rocket. The night of launch, the rocket is flown up to the sky by Northrop Grumman’s L-1011 Stargazer airplane, which takes off from Cape Canaveral Air Force Station in Florida. From 40,000 feet above the open ocean, the Pegasus XL rocket drops from the plane and free-falls for about five seconds before igniting and carrying ICON into orbit.   

image

NASA TV coverage of the launch starts at 9:15 p.m. EDT on Oct. 10 at nasa.gov/live. You can also follow along on Twitter, Facebook or at nasa.gov/icon.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
1 year ago

how can one work in nasa? it's my dream to work in nasa someday, right now, I'm just a high schooler but I've been planning out my trajectory so some advice and tips would be helpful.


Tags
8 years ago

Solar System: Things to Know This Week

From observing our moon to Saturn’s mini solar system …here are a few things you should know about our solar system this week:

1. What a Long, Strange—and Revealing—Trip It's Been

image

As the Cassini mission builds toward its climactic "Grand Finale," we’re taking a look back at the epic story of its journey among Saturn's mini-solar system of rings and moons.

+ Traverse the timeline

2. Our Very Own Moon

image

Unlike Saturn, Earth has only one moon. Let’s celebrate it! International Observe the Moon Night (InOMN) is a worldwide, public celebration of lunar science and exploration held annually. On Oct. 8, everyone on Earth is invited to observe and learn about the moon together, and to celebrate the cultural and personal connections we all have with it. 

+ Join in

3. What's Up, October?

Solar System: Things To Know This Week

Even more about Earth’s moon is the subject of this month's video guide for sky watchers and includes a look at the moon’s phases and when to observe them. Also featured are a guide to upcoming meteor showers and tips on how to catch a glimpse of Saturn.

+ Take a look

4. Nine Lives

image

Dawn's discoveries continue, even as the asteroid belt mission marks nine years in space. "For such an overachiever," writes Dawn's top scientist, "it's fitting that now, on its ninth anniversary, the spacecraft is engaged in activities entirely unimagined on its eighth."

+ Learn more

5. The Incredible Shrinking Mercury

image

It's small, it's hot, and it's shrinking. Research funded by us suggests that Mercury is contracting even today. This means we now know that Mercury joins Earth as a tectonically active planet.

+ Get the small details

Discover the full list of 10 things to know about our solar system this week HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

i cannot wait for my first solar eclipse! what's your favorite part about these eclipses, alexa?

I’ve never seen totality as the last time it was in the US was before I was born. My favourite part of seeing videos and photos is definitely viewing the solar corona! But I’m looking forward to this one so that I can see sunspots during the partial eclipse! It’s these spots that are often the active regions on the Sun that produce solar storms that can ultimately drive the aurora here on Earth! 


Tags
2 years ago

Say Hello to NGC 6441

A crowded cluster of over a million stars packs together at the center of this image of the star cluster NGC 6441. These stars shine in white, red, blue, and yellowish hues, and grow more sporadic at the image’s edges, all glittering against a black backdrop of space. Credit: ESA/Hubble & NASA, G. Piotto

Location: In the Scorpius constellation

Distance from Earth: About 44,000 light-years

Object type: Globular star cluster

Discovered by: James Dunlop in 1826

Each tiny point of light in this image is its own star - and there are more than a million of them! This stunning image captured by the Hubble Telescope depicts NGC 6441, a globular cluster that weighs about 1.6 million times the mass of our Sun. Globular clusters like NGC 6441 are groups of old stars held together by their mutual gravitational attraction, appearing nearly spherical in shape due to the density of stars that comprises them. This particular cluster is one of the most massive and luminous in our Milky Way Galaxy. It is also home to a planetary nebula and four pulsars (rotating neutron stars that emit beams of radiation at steady intervals, detected when the beams are aimed at Earth). 

Read more information about NGC 6441 here.

Right now, the Hubble Space Telescope is delving into its #StarrySights campaign! Find more star cluster content and spectacular new images by following along on Hubble’s Twitter, Facebook, and Instagram.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
6 years ago

One Year of Leadership

image

It’s been one year since Jim Bridenstine was sworn in as our 13th administrator, starting the job on April 23, 2018. Since then, he has led the agency towards taking our nation farther than ever before — from assigning the first astronauts to fly on commercial vehicles to the International Space Station, to witnessing New Horizon’s arrival at the farthest object ever explored, to working to meet the challenge of landing humans on the lunar surface by 2024.

Here is a look at what happened in the last year under the Administrator’s leadership:

1. Assigned the first astronauts to fly on commercial spacecraft to the International Space Station.

image

Administrator Bridenstine introduced to the world on Aug. 3, 2018 the first U.S. astronauts who will fly on American-made, commercial spacecraft to and from the International Space Station — an endeavor that will return astronaut launches to U.S. soil for the first time since the space shuttle’s retirement in 2011.

“Today, our country’s dreams of greater achievements in space are within our grasp,” said Administrator Bridenstine. “This accomplished group of American astronauts, flying on new spacecraft developed by our commercial partners Boeing and SpaceX, will launch a new era of human spaceflight.”

2. Announced the first commercial effort to regularly send science payloads to the Moon.

image

Administrator Bridenstine announced new Moon partnerships with American companies — an important step to achieving long-term scientific study and human exploration of the Moon and Mars. Nine U.S. companies were named as eligible to bid on NASA delivery services to the Moon through Commercial Lunar Payload Services (CLPS) contracts on Nov. 29, 2018.  

3. Witnessed the teamwork that led to the latest mission to the Red Planet with Mars InSight’s landing.

image

On Nov. 26, 2018, the InSight lander successfully touched down on Mars after an almost seven-month, 300-million-mile (485-million-kilometer) journey from Earth. Administrator Bridenstine celebrated with the members of Mars Cube One and Mars InSight team members after the Mars lander successfully landed and began its mission to study the “inner space” of Mars: its crust, mantle and core.

"Today, we successfully landed on Mars for the eighth time in human history,” said NASA Administrator Jim Bridenstine. “InSight will study the interior of Mars, and will teach us valuable science as we prepare to send astronauts to the Moon and later to Mars…The best of NASA is yet to come, and it is coming soon.”

4. Oversaw the arrival of the first American mission to an asteroid designed to return samples and New Horizon’s arrival at Ultima Thule, the farthest object ever explored.

image

The spacecraft OSIRIS-REx traveled 1.4 million miles (2.2 million kilometers) to arrive at the asteroid Bennu on Dec. 3. The first asteroid sample mission is helping scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth. OSIRIS-Rex has already revealed water locked inside the clays that make up the asteroid.

And on the early hours of New Year’s Day, 2019, our New Horizons spacecraft flew past Ultima Thule in Kuiper belt, a region of primordial objects that hold keys to understanding the origins of the solar system.

“In addition to being the first to explore Pluto, today New Horizons flew by the most distant object ever visited by a spacecraft and became the first to directly explore an object that holds remnants from the birth of our solar system,” said Administrator Bridenstine. “This is what leadership in space is all about.”

5. Directed the first major milestone in commercial crew flights with the successful Space X Demo-1 mission.

image

Demonstration Mission-1 (Demo-1) was an uncrewed flight test designed to demonstrate a new commercial capability developed under NASA’s Commercial Crew Program. The mission began March 2, when the Crew Dragon launched from NASA’s Kennedy Space Center in Florida and docked to the International Space Station for five days.

“Today’s successful re-entry and recovery of the Crew Dragon capsule after its first mission to the International Space Station marked another important milestone in the future of human spaceflight,” said Administrator Bridenstine. “I want to once again congratulate the NASA and SpaceX teams on an incredible week. Our Commercial Crew Program is one step closer to launching American astronauts on American rockets from American soil.”

6. Is currently working to meet the challenge of advancing human exploration of the lunar surface to 2024.

image

Administrator Bridenstine has accomplished a lot since he swore in one year ago — but the best is yet to come. On March 26, Vice President Mike Pence tasked our agency with returning American astronauts to the Moon by 2024 at the fifth meeting of the National Space Council. 

“It is the right time for this challenge, and I assured the Vice President that we, the people of NASA, are up to the challenge,” said Administrator Bridenstine. “There’s a lot of excitement about our plans and also a lot of hard work and challenges ahead, but I know the NASA workforce and our partners are up to it.”

Learn more about what’s still to come this year at NASA:

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Getting to Mars: A New Rocket for the Journey

Do you know what the structural backbone is of our new rocket, the Space Launch System? If you answered the core stage, give yourself a double thumbs up! Or better yet, have astronaut Scott Kelly do it!

image

We’re on a journey to Mars. For bolder missions to deep space, we need a big, powerful rocket like SLS to take astronauts in the Orion spacecraft to places we've never gone before. The core stage is a major part of that story, as it will house the fuel and avionics systems that will power and guide the rocket to those new destinations beyond Earth’s orbit. Here's how:

It's Big, and It's Fast.

The core stage will be the largest rocket stage ever built and is under construction right now at our Michoud Assembly Facility in New Orleans. It will stand at 212 feet tall and weigh more than 2.3 million pounds with propellant. That propellant is cryogenic liquid hydrogen and liquid oxygen that will feed the vehicle’s RS-25 engines. In just 8.5 minutes, the core stage will reach Mach 23, which is faster than 17,000 mph!

It's Smart.

image

Similar to a car, the rocket needs all the equipment necessary for the "drive" to deep space. The core stage will house the vehicle’s avionics, including flight computers, instrumentation, batteries, power handling, sensors and other electronics. That's a lot of brain power behind those orange-clad aluminum walls. *Fun fact: Orange is the color of the rocket's insulation.

It's a Five-Parter.

image

The core stage is made up of five parts. Starting from the bottom is the engine section, which will deliver the propellants to the four RS-25 engines. It also will house avionics to steer the engines, and be an attachment point for the two, five-segment solid rocket boosters. The engine section for the first SLS flight has completed welding and is in the final phases of manufacturing at Michoud.

image

Next up is the liquid hydrogen tank. It will hold 537,000 gallons of liquid hydrogen cooled to -423 degrees Fahrenheit. Right now, engineers are building the tank for the first SLS mission. It will look very similar to the qualification test article that just finished welding at Michoud. That's an impressive piece of rocket hardware!

image

The next part of the core stage is the intertank, which will join the propellant tanks. It has to be super strong because it is the attachment point for the boosters and absorbs most of the force when they fire 3.6 million pounds of thrust each. It's also a "think tank" of sorts, as it holds the SLS avionics and electronics. The intertank is even getting its own test structure at our Marshall Space Flight Center in Huntsville, Alabama.

image

And then there's the liquid oxygen tank. It will store 196,000 gallons of liquid oxygen cooled to -297 degrees. If you haven't done the math, that's 733,000 gallons of propellant for both tanks, which is enough to fill 63 large tanker trucks. Toot, toot. Beep, beep! A confidence version of the tank has finished welding at Michoud, and it's impressive. Just ask this guy.

image

The topper of the core stage is the forward skirt. Funny name, but serious hardware. It's home to the flight computers, cameras and avionics. The avionics system is being tested right now in a half-ring structure at the Marshall Center.

image

You can click here for more SLS core stage facts. We'll continue building, and see you at the launch pad for the first flight of SLS with Orion in 2018!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

#TBT to 1969: The Restoration of The Apollo Mission Control Center

On July 20, 1969 the Apollo Mission Control Center landed men on the Moon with only seconds of fuel left. 

#TBT To 1969: The Restoration Of The Apollo Mission Control Center

Just after the spacecraft safely touched down on the lunar surface, Charlie Duke said to the crew, “Roger, Tranquility. We copy you on the ground. You got a bunch of guys about to turn blue—we’re breathing again. Thanks a lot.” The hard work and preparation of the men who stayed back on Earth was what made John F. Kennedy’s dreams of space exploration come true. 

Today, the facility these men worked in has been restored to its Apollo-era appearance, forever preserving this National Historic Landmark.

#TBT To 1969: The Restoration Of The Apollo Mission Control Center

It took the restoration crew roughly six years to return the Apollo Mission Control Room to its original retro appearance. Every inch of the room was cleaned and restored by workers, enhancing the 1960s pistachio palette seen on the consoles, as well as ridding the room of 50-year-old gum stuck in places people thought would never be found. Let that be a lesson to us all.

#TBT To 1969: The Restoration Of The Apollo Mission Control Center

From the artifacts sitting on the consoles to the displays projected at the front of the room, every detail has been carefully put in its proper place. Peep the American flag hanging in the back of the room—this flag went to the Moon on Apollo 17, was planted in the ground, then returned home as a souvenir. Next to the flag, a duplicate of the plaque placed on the Moon hangs on the wall.

#TBT To 1969: The Restoration Of The Apollo Mission Control Center

Perhaps the only aspect of the room that wasn’t preserved was the thick stench of smoke, burnt coffee, banana peels and pizza boxes. But the ashtrays, pipes, cigarettes and coffee mugs sit in the room as reminders of the aroma. And yes, the Styrofoam cup is authentic to the ‘60s—it’s not an original artifact, but we’re certain this one will last for years to come.

#TBT To 1969: The Restoration Of The Apollo Mission Control Center

In case you’re worried we didn’t get detailed enough, check the binders in the room. Each one is filled with authentic documents that would’ve been used during the Apollo missions. Some of the documents have been recreated, but many of them were copied from originals that employees had saved for 50 years.

#TBT To 1969: The Restoration Of The Apollo Mission Control Center

Each console was rigged to send tubes throughout the building, often filled with important documents, but also stuffed with sandwiches and cake (all of the essentials to send men to the Moon).

#TBT To 1969: The Restoration Of The Apollo Mission Control Center

Several of the surviving Apollo alumni visited mission control for the grand opening of the room at the end of June. Except for the smoke, they say the room looks just as they remember it did 50 years ago. It’s one giant leap—back in time.

This week, you can watch us salute our #Apollo50th heroes and look forward to our next giant leap for future missions to the Moon and Mars. Tune in: https://go.nasa.gov/Apollo50thEvents

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
1 year ago
At top is Chloe Mehring, a woman with shoulder-length brown hair, poses for a picture in the Mission Control Center at NASA’s Johnson Space Center in Houston. She wears a black blazer, and her arms are crossed as she smiles. The words "Chloe Mehring" are underneath her arms. Behind her are several desks lining an aisle. On the desks are many computer screens. Large screens line the walls with the logos of NASA and other space agencies, times, maps, and more information.

Diane Dailey (bottom), a woman with brown hair, poses for a picture in the Mission Control Center at NASA’s Johnson Space Center in Houston. She wears a black blazer, and her arms are crossed as she smiles. Her name, "Diane Dailey" is written below her. Dailey stands at a desk with three monitors on it, as well as a telephone and several cords. Her nameplate, reading “Flight Director” is visible at the center of the photo. Behind her are several large screens lining the walls. Various information is displayed on those screens, but a map of the world and the Horizon Flight logo are most prominent. There are also people working at other desks in the room. 

In the center of the image is an orange many-pointed star shape. The text in the sticker says "Tumblr answer time." Credit: NASA, Tumblr

What’s It Like to Work in NASA’s Mission Control Center?

In the latest installment of our First Woman graphic novel series, we see Commander Callie Rodriguez embark on the next phase of her trailblazing journey, as she leaves the Moon to take the helm at Mission Control.

Two panels from the second issue of First Woman, NASA’s graphic novel series following fictional astronaut Callie Rodriguez. In the first panel, Callie, dressed in a suit, speaks to an astronaut while working at Mission Control. She says, “Commander! We’re getting updated readings from the surface. The weather’s changing rapidly. There’s a new dust storm at the landing site. You may have to assume manual control as you approach the surface. The decision will be yours.” The speech bubble overlaps into the second panel, which shows the many desks and computer monitors in Mission Control. On the screen, we can see the astronaut Callie is speaking to. Credit: NASA

Flight directors work in Mission Control to oversee operations of the International Space Station and Artemis missions to the Moon. They have a unique, overarching perspective focused on integration between all the systems that make a mission a success – flight directors have to learn a little about a lot.

Diane Dailey and Chloe Mehring were selected as flight directors in 2021. They’ll be taking your questions about what it’s like to lead teams of flight controllers, engineers, and countless professionals, both agencywide and internationally, in an Answer Time session on Nov. 28, 2023, from noon to 1 p.m. EST (9-10 a.m. PST) here on our Tumblr!

Like Callie, how did their unique backgrounds and previous experience, prepare them for this role? What are they excited about as we return to the Moon?

🚨 Ask your questions now by visiting https://nasa.tumblr.com/ask.

Diane Dailey started her career at NASA in 2006 in the space station Environmental Control and Life Support Systems (ECLSS) group. As an ECLSS flight controller, she logged more than 1,700 hours of console time, supported 10 space shuttle missions, and led the ECLSS team. She transitioned to the Integration and System Engineering (ISE) group, where she was the lead flight controller for the 10th and 21st Commercial Resupply Services missions for SpaceX. In addition, she was the ISE lead for NASA’s SpaceX Demo-1 and Demo-2 crew spacecraft test flights. Dailey was also a capsule communicator (Capcom) controller and instructor.

She was selected as a flight director in 2021 and chose her call sign of “Horizon Flight” during her first shift in November of that year. She has since served as the Lead Flight director for the ISS Expedition 68, led the development of a contingency spacewalk, and led a spacewalk in June to install a new solar array on the space station. She is currently working on development of the upcoming Artemis II mission and the Human Lander Systems which will return humanity to the moon. Dailey was raised in Lubbock, Texas, and graduated from Texas A&M University in College Station with a bachelor’s degree in biomedical engineering. She is married and a mother of two. She enjoys cooking, traveling, and spending time outdoors.

Chloe Mehring started her NASA career in 2008 in the Flight Operations’ propulsion systems group and supported 11 space shuttle missions. She served as propulsion support officer for Exploration Flight Test-1, the first test flight of the Orion spacecraft that will be used for Artemis missions to the Moon. Mehring was also a lead NASA propulsion officer for SpaceX’s Crew Dragon spacecraft and served as backup lead for the Boeing Starliner spacecraft. She was accepted into the 2021 Flight Director class and worked her first shift in February 2022, taking on the call sign “Lion Flight”. Since becoming certified, she has worked over 100 shifts, lead the NG-17 cargo resupply mission team, and executed two United States spacewalks within 10 days of each other. She became certified as a Boeing Starliner Flight Director, sat console for the unmanned test flight in May 2022 (OFT-2) and will be leading the undock team for the first crewed mission on Starliner in the spring of next year. She originally is from Mifflinville, Pennsylvania, and graduated with a bachelor’s degree in aerospace engineering from The Pennsylvania State University in State College. She is a wife, a mom to one boy, and she enjoys fitness, cooking and gardening.


Tags
Loading...
End of content
No more pages to load
  • riot2011frontlines
    riot2011frontlines liked this · 1 year ago
  • oihvgci
    oihvgci liked this · 1 year ago
  • deltacubed
    deltacubed reblogged this · 3 years ago
  • markivnaayardanahc
    markivnaayardanahc liked this · 5 years ago
  • azurecrucis
    azurecrucis liked this · 5 years ago
  • sagmrth8
    sagmrth8 liked this · 5 years ago
  • leftrascaluniversityweasel-blog
    leftrascaluniversityweasel-blog liked this · 5 years ago
  • go-wind-stuff
    go-wind-stuff reblogged this · 5 years ago
  • go-wind-stuff
    go-wind-stuff liked this · 5 years ago
  • clayard
    clayard liked this · 5 years ago
  • cometoso
    cometoso liked this · 5 years ago
  • nataliebels-blog
    nataliebels-blog reblogged this · 6 years ago
  • snark-sniper
    snark-sniper reblogged this · 6 years ago
  • stefany
    stefany liked this · 6 years ago
  • shawn1965
    shawn1965 liked this · 6 years ago
  • themissdreamingstories
    themissdreamingstories liked this · 6 years ago
  • sudrien-scratched008
    sudrien-scratched008 reblogged this · 6 years ago
  • sudrien-scratched008
    sudrien-scratched008 liked this · 6 years ago
  • idran
    idran reblogged this · 6 years ago
  • phllps88
    phllps88 liked this · 6 years ago
  • ayenesams-blog
    ayenesams-blog reblogged this · 6 years ago
  • ayenesams-blog
    ayenesams-blog liked this · 6 years ago
  • northern-man
    northern-man liked this · 6 years ago
  • crazy-walls
    crazy-walls reblogged this · 6 years ago
  • innertoadbanditcloud-blog
    innertoadbanditcloud-blog liked this · 6 years ago
  • icarune
    icarune reblogged this · 6 years ago
  • libr-tumbl-alternative
    libr-tumbl-alternative liked this · 6 years ago
  • heygloria
    heygloria liked this · 6 years ago
  • idran
    idran liked this · 6 years ago
  • lalunabruja
    lalunabruja liked this · 6 years ago
  • plutesboots
    plutesboots liked this · 6 years ago
  • the-snow
    the-snow reblogged this · 6 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags