On July 20, 1969 the Apollo Mission Control Center landed men on the Moon with only seconds of fuel left.
Just after the spacecraft safely touched down on the lunar surface, Charlie Duke said to the crew, “Roger, Tranquility. We copy you on the ground. You got a bunch of guys about to turn blue—we’re breathing again. Thanks a lot.” The hard work and preparation of the men who stayed back on Earth was what made John F. Kennedy’s dreams of space exploration come true.
Today, the facility these men worked in has been restored to its Apollo-era appearance, forever preserving this National Historic Landmark.
It took the restoration crew roughly six years to return the Apollo Mission Control Room to its original retro appearance. Every inch of the room was cleaned and restored by workers, enhancing the 1960s pistachio palette seen on the consoles, as well as ridding the room of 50-year-old gum stuck in places people thought would never be found. Let that be a lesson to us all.
From the artifacts sitting on the consoles to the displays projected at the front of the room, every detail has been carefully put in its proper place. Peep the American flag hanging in the back of the room—this flag went to the Moon on Apollo 17, was planted in the ground, then returned home as a souvenir. Next to the flag, a duplicate of the plaque placed on the Moon hangs on the wall.
Perhaps the only aspect of the room that wasn’t preserved was the thick stench of smoke, burnt coffee, banana peels and pizza boxes. But the ashtrays, pipes, cigarettes and coffee mugs sit in the room as reminders of the aroma. And yes, the Styrofoam cup is authentic to the ‘60s—it’s not an original artifact, but we’re certain this one will last for years to come.
In case you’re worried we didn’t get detailed enough, check the binders in the room. Each one is filled with authentic documents that would’ve been used during the Apollo missions. Some of the documents have been recreated, but many of them were copied from originals that employees had saved for 50 years.
Each console was rigged to send tubes throughout the building, often filled with important documents, but also stuffed with sandwiches and cake (all of the essentials to send men to the Moon).
Several of the surviving Apollo alumni visited mission control for the grand opening of the room at the end of June. Except for the smoke, they say the room looks just as they remember it did 50 years ago. It’s one giant leap—back in time.
This week, you can watch us salute our #Apollo50th heroes and look forward to our next giant leap for future missions to the Moon and Mars. Tune in: https://go.nasa.gov/Apollo50thEvents
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Stretched Loops: When an active region rotated over to the edge of the sun, it presented us with a nice profile view of its elongated loops stretching and swaying above it (March 8/9, 2017). These loops are actually charged particles (made visible in extreme ultraviolet light) swirling along the magnetic field lines of the active region. The video covers about 30 hours of activity. Also of note is a darker twisting mass of plasma to the left of the active region being pulled and spun about by magnetic forces.
Credit: Solar Dynamics Observatory, NASA
Discover why we study ice and how this research benefits Earth.
We fly our DC-8 aircraft very low over Antarctica as part of Operation IceBridge – a mission that’s conducting the largest-ever airborne survey of Earth’s polar ice.
Records show that 2015 was the warmest year on record, and this heat affects the Arctic and Antarctica – areas that serve as a kind of air conditioner for Earth and hold an enormous of water.
IceBridge flies over both Greenland and Antarctica to measure how the ice in these areas is changing, in part because of rising average global temperatures.
IceBridge’s data has shown that most of Antarctica’s ice loss is occurring in the western region. All that melting ice flows into the ocean, contributing to sea level rise.
IceBridge has been flying the same routes since the mission began in 2009. Data from the flights help scientists better measure year-to-year changes.
IceBridge carries the most sophisticated snow and ice instruments ever flown. Its main instrument is called the Airborne Topographic Mapper, or ATM.The ATM laser measure changes in the height of the ice surface by measuring the time it takes for laser light to bounce off the ice and return to the plane – ultimately mapping ice in great detail, like in this image of Antarctica's Crane Glacier.
For the sake of the laser, IceBridge planes have to fly very low over the surface of snow and ice, sometimes as low as 1,000 feet above the ground. For comparison, commercial flights usually stay around 30,000 feet! Two pilots and a flight enginner manage the many details involved in each 10- to 12-hour flight.
One of the scientific radars that fly aboard IceBridge helped the British Antarctic Survey create this view of what Antarctica would look like without any ice.
IceBridge also studies gravity using a very sensitive instrument that can measure minuscule gravitational changes, allowing scientists to map the ocean cavities underneath the ice edges of Antarctica. This data is essential for understanding how the ice and the ocean interact. The instrument’s detectors are very sensitive to cold, so we bundle it up to keep it warm!
Though the ice sheet of Antarctica is two miles thick in places, the ice still “flows” – faster in some places and slower in others. IceBridge data helps us track how much glaciers change from year-to-year.
Why do we call this mission IceBridge? It is bridging the gap between our Ice, Cloud and Land Elevation Satellite, or ICESat – which gathered data from 2003 to 2009 – and ICESat-2, which will launch in 2018.
Learn more about our IceBridge mission here: www.nasa.gov/icebridge and about all of our ice missions on Twitter at @NASA_Ice.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
This week on NASA Explorers, we’re aboard the International Space Station!
Now that our scientists’ experiment has made it to space, it’s time to see how their samples behave in microgravity.
See how astronauts conduct science in space, while a team back here on Earth conducts their own piece of the project. Watch the episode here:
Follow NASA Explorers on Facebook to catch new episodes of season 4 every Wednesday!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
SHAKE IT UP! The Orion Exploration Mission-1 crew module was blasted with 141 decibels of acoustic energy to make sure parts don’t come loose when exposed to extreme vibrations experienced at launch. Don’t try this at home.
Other than joy, why do you do the things you do?
What do films and TV get wrong about your job the most?
Did you know technologies developed for space show up all over Earth? Our Technology Transfer Program has one major goal: bring our technology down to Earth. We patent space innovations developed for missions so that companies, startups and entrepreneurs can spin them off into new commercial products.
Our engineers and scientists create all sorts of materials and coatings—in fact, it is one of the most licensed technology categories in our patent portfolio. From materials that improve industrial and household products, to coatings and insulations that protect satellites, machinery and firefighters, our technologies offer smart solutions for modern challenges.
These are a few of our most in-demand technologies.
Made by innovators at our Langley Research Center, this tech was first created for exploring dusty, dirty surfaces like the Moon, Mars and asteroids. Lunar dust has been shown to cause big problems with mechanical equipment, like clogging filters and damaging seals. This technology can be used in the production of films, coatings and surface treatments to create dust-resistant and self-cleaning products for biomedical devices, aircraft, cars and much more. This tech could be a game-changer when battling dirt and grime.
Looking for a technology to ward off corrosion that’s also safe for the environment? Developed to protect our launch pads at Kennedy Space Center from extreme heat and exhaust from rockets, this “smart” coating can detect and prevent corrosion. It can even be painted on damaged surfaces to heal and protect them going forward. This tech has commercial potential in building safer bridges, automobiles and machinery. While it may seem like magic, this technology will reduce maintenance cost and improve safety.
Made to protect astronauts and vehicles during the dangerously hot task of reentry, scientists at Langley developed a flexible, lightweight and portable thermal protection system that can serve as a personal emergency fire shelter.
The flexible technology is made up of multilayer thermal blankets designed to handle external temperatures of up to 2,000°F – that’s as hot as magma found in some volcanos! The system can be formed as a sleeping bag, a tent, a blanket, a curtain, a flexible roll-up doorway or even for fire protection in housing structures.
This award-winning tech was initially developed by researchers at our Marshall Space Flight Center to help reduce vehicle exhaust emissions. This special alloy is flexible and strong—even at temperatures of over 500°F. That means it can withstand more wear and tear than other similar materials. Currently, this tech can be found improving motors on fishing boats as well as in all kinds of different engines.
Not all lubricants are liquids, for example, the non-stick coating on a frying pan. Truly in a class of its own, innovators at our Glenn Research Center have created solid lubricant materials to reduce friction and wear in mechanical parts, especially in extremely high heat. This tech could be useful in large engines, valves, turbines and power generation.
We needed a better material than iron or steel to prevent corrosion and rust in the International Space Station’s wastewater treatment system. Enter: our high-strength, super elastic compounds. Shock-proof, lightweight, durable and immune to rust, this durable tech has applications in ships, machines, industrial knives and cutters, and engine bearings here on Earth. They also don’t chemically degrade or break down lubricants, a common problem with existing bearing materials.
Interested in licensing the tech mentioned above? Follow the links to apply through our website, http://technology.nasa.gov.
You can also browse our entire materials and coatings portfolio at http://technology.nasa.gov/materials_and_coatings/.
Follow our NASA Technology Transfer Program on Twitter (@NASAsolutions) for the latest updates on technologies available for licensing.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
We often imagine galaxies as having massive spiral arms or thick disks of dust, but not all galaxies are oriented face-on as viewed from Earth. From our viewpoint, our Spitzer Space Telescope can detect this galaxy's infrared light but can only view the entire galaxy on its side where we can't see its spiral features. We know it has a diameter of roughly 60,000 light-years — a little more than half the diameter of our own Milky Way galaxy.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
We launched our Spitzer Space Telescope into orbit around the Sunday on Aug. 25, 2003. Since then, the observatory has been lifting the veil on the wonders of the cosmos, from our own solar system to faraway galaxies, using infrared light.
Thanks to Spitzer, scientists were able to confirm the presence of seven rocky, Earth-size planets in the TRAPPIST-1 system. The telescope has also provided weather maps of hot, gaseous exoplanets and revealed a hidden ring around Saturn. It has illuminated hidden collections of dust in a wide variety of locations, including cosmic nebulas (clouds of gas and dust in space), where young stars form, and swirling galaxies. Spitzer has additionally investigated some of the universe's oldest galaxies and stared at the black hole at the center of the Milky Way.
In honor of Spitzer's Sweet 16 in space, here are 16 amazing images from the mission.
This Spitzer image shows the giant star Zeta Ophiuchi and the bow shock, or shock wave, in front of it. Visible only in infrared light, the bow shock is created by winds that flow from the star, making ripples in the surrounding dust.
The Pleiades star cluster, also known as the Seven Sisters, is a frequent target for night sky observers. This image from Spitzer zooms in on a few members of the sisterhood. The filaments surrounding the stars are dust, and the three colors represent different wavelengths of infrared light.
Newborn stars peek out from beneath their blanket of dust in this image of the Rho Ophiuchi nebula. Called "Rho Oph" by astronomers and located about 400 light-years from Earth, it's one of the closest star-forming regions to our own solar system.
The youngest stars in this image are surrounded by dusty disks of material from which the stars — and their potential planetary systems — are forming. More evolved stars, which have shed their natal material, are blue.
Located about 700 light-years from Earth, the eye-like Helix nebula is a planetary nebula, or the remains of a Sun-like star. When these stars run out of their internal fuel supply, their outer layers puff up to create the nebula. Our Sun will blossom into a planetary nebula when it dies in about 5 billion years.
The bright star at the center of this image is Eta Carinae, one of the most massive stars in the Milky Way galaxy. With around 100 times the mass of the Sun and at least 1 million times the brightness, Eta Carinae releases a tremendous outflow of energy that has eroded the surrounding nebula.
Located 28 million light-years from Earth, Messier 104 — also called the Sombrero galaxy or M104 — is notable for its nearly edge-on orientation as seen from our planet. Spitzer observations were the first to reveal the smooth, bright ring of dust (seen in red) circling the galaxy.
This infrared image of the galaxy Messier 81, or M81, reveals lanes of dust illuminated by active star formation throughout the galaxy's spiral arms. Located in the northern constellation of Ursa Major (which includes the Big Dipper), M81 is also about 12 million light-years from Earth.
Messier 82 — also known as the Cigar galaxy or M82 — is a hotbed of young, massive stars. In visible light, it appears as a diffuse bar of blue light, but in this infrared image, scientists can see huge red clouds of dust blown out into space by winds and radiation from those stars.
This image of Messier 101, also known as the Pinwheel Galaxy or M101, combines data in the infrared, visible, ultraviolet and X-rays from Spitzer and three other NASA space telescopes: Hubble, the Galaxy Evolution Explorer's Far Ultraviolet detector (GALEX) and the Chandra X-Ray Observatory. The galaxy is about 70% larger than our own Milky Way, with a diameter of about 170,000 light-years, and sits at a distance of 21 million light-years from Earth. Read more about its colors here.
Approximately 100 million years ago, a smaller galaxy plunged through the heart of the Cartwheel galaxy, creating ripples of brief star formation. As with the Pinwheel galaxy above, this composite image includes data from NASA's Spitzer, Hubble, GALEX and Chandra observatories.
The first ripple appears as a bright blue outer ring around the larger object, radiating ultraviolet light visible to GALEX. The clumps of pink along the outer blue ring are X-ray (observed by Chandra) and ultraviolet radiation.
Located 1,500 light-years from Earth, the Orion nebula is the brightest spot in the sword of the constellation Orion. Four massive stars, collectively called the Trapezium, appear as a yellow smudge near the image center. Visible and ultraviolet data from Hubble appear as swirls of green that indicate the presence of gas heated by intense ultraviolet radiation from the Trapezium's stars. Less-embedded stars appear as specks of green, and foreground stars as blue spots. Meanwhile, Spitzer's infrared view exposes carbon-rich molecules called polycyclic aromatic hydrocarbons, shown here as wisps of red and orange. Orange-yellow dots are infant stars deeply embedded in cocoons of dust and gas.
Located about 10,000 light-years from Earth in the constellation Auriga, the Spider nebula resides in the outer part of the Milky Way. Combining data from Spitzer and the Two Micron All Sky Survey (2MASS), the image shows green clouds of dust illuminated by star formation in the region.
This view of the North America nebula combines visible light collected by the Digitized Sky Survey with infrared light from NASA's Spitzer Space Telescope. Blue hues represent visible light, while infrared is displayed as red and green. Clusters of young stars (about 1 million years old) can be found throughout the image.
This infrared mosaic offers a stunning view of the Milky Way galaxy's busy center. The pictured region, located in the Sagittarius constellation, is 900 light-years agross and shows hundreds of thousands of mostly old stars amid clouds of glowing dust lit up by younger, more massive stars. Our Sun is located 26,000 light-years away in a more peaceful, spacious neighborhood, out in the galactic suburbs.
The Large Magellanic Cloud, a dwarf galaxy located about 160,000 light-years from Earth, looks like a choppy sea of dust in this infrared portrait. The blue color, seen most prominently in the central bar, represents starlight from older stars. The chaotic, bright regions outside this bar are filled with hot, massive stars buried in thick blankets of dust.
In this large celestial mosaic from Spitzer, there's a lot to see, including multiple clusters of stars born from the same dense clumps of gas and dust. The grand green-and-orange delta filling most of the image is a faraway nebula. The bright white region at its tip is illuminated by massive stars, and dust that has been heated by the stars' radiation creates the surrounding red glow.
Managed by our Jet Propulsion Laboratory in Pasadena, California, Spitzer's primary mission lasted five-and-a-half years and ended when it ran out of the liquid helium coolant necessary to operate two of its three instruments. But, its passive-cooling design has allowed part of its third instrument to continue operating for more than 10 additional years. The mission is scheduled to end on Jan. 30, 2020.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The Martian movie is set 20 years in the future, but here at NASA we are already developing many of the technologies that appear in the film. The movie takes the work we’re doing and extends it into fiction set in the 2030s, when NASA astronauts are regularly traveling to Mars and living on the surface. Here are a few ways The Martian movie compares to what we’re really doing on our journey to Mars:
Analog Missions
MOVIE: In the film, Astronaut Mark Watney is stranded on the Red Planet.
REALITY: In preparation for sending humans to Mars, we have completed one of the most extensive isolation missions in Hawaii, known as HI-SEAS. The goal of this study was to see how isolation and the lack of privacy in a small group affects social aspects of would-be explorers. The most recent simulation was eight months long, and the next mission is planned to last a year.
Spaceport
MOVIE: The Martian movie launches astronauts on the Aries missions from a refurbished and state of the art space center.
REALITY: Currently, the Ground Systems Development and Operations’ primary objective is to prepare the center to process and launch the next-generation vehicles and spacecraft designed to achieve our goals for space exploration. We are not only working to develop new systems, but also refurbishing and upgrading infrastructure to meet future demands.
Deep Space Propulsion
MOVIE: In the film, the astronauts depart the Red Planet using a propulsion system know as the Mars Ascent Vehicle (MAV).
REALITY: We are currently developing the most powerful rocket we’ve ever built, our Space Launch System (SLS). Once complete, this system will enable astronauts to travel deeper into the solar system than ever before! The RS-25 engines that will be used on the SLS, were previously utilized as the main engine on our space shuttles. These engines have proven their reliability and are currently being refurbished with updated and improved technology for our journey to Mars.
Mission Control
MOVIE: In the movie, Mission Control operations support the Aries 3 crew.
REALITY: On our real journey to Mars, Mission Control in Houston will support our Orion spacecraft and the crew onboard as they travel into deep space.
Habitat
MOVIE: The artificial living habitat on Mars in The Martian movie is constructed of industrial canvas and contains an array of life support systems.
REALITY: The Human Exploration Research Analog (HERA), formerly known as the Deep Space Habitat, is a three-story module that was designed and created through a series of university competitions. Studies conducted in habitat mockups will allow us to evolve this technology to create a reliable structures for use on Mars.
Rover
MOVIE: The characters in the film are able to cruise around the Red Planet inside the Mars Decent Vehicle (MDV).
REALITY: We are currently developing a next generation vehicle for space exploration. Our Mars Exploration Vehicle (MEV) is designed to be flexible depending on the destination. It will have a pressurized cabin, ability to house two astronauts for up to 14 days and will be about the size of a pickup truck.
Harvest
MOVIE: Astronaut Mark Watney grows potatoes on Mars in The Martian movie.
REALITY: We’re already growing and harvesting lettuce on the International Space Station in preparation for deep space exploration. Growing fresh food in space will provide future pioneers with a sustainable food supplement, and could also be used for recreational gardening during deep space missions.
Spacesuit
MOVIE: The spacesuit worn by astronauts in the film allows them to work and function on the surface of Mars, while protecting them from the harsh environment.
REALITY: Prototypes of our Z-2 Exploration Suit are helping to develop the technologies astronauts will use to live and work on the the Martian surface. Technology advances in this next generation spacesuit would shorten preparation time, improve safety and boost astronaut capabilities during spacewalks and surface activities.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts