As the sun rises, our Global Hawk is prepped for flight at Armstrong Flight Research Center on Edwards Air Force Base in California. Pre-dawn flights of our Global Hawk help beat hot summer days in Southern California. Electronic components, which are cooled by fuel onboard, only function within temperature limitations, so testing usually ceases by midday, as fuel and onboard computers become too hot to operate. The Global Hawk unmanned aircraft is used for high-altitude, long-duration Earth science missions. The ability of the Global Hawk to autonomously fly long distances, remain aloft for extended periods of time and carry large payloads brings a new capability to the science community for measuring, monitoring and observing remote locations of Earth not feasible or practical with piloted aircraft, most other robotic or remotely operated aircraft, or space satellites.
For more information, visit HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Of course Saturn brought its ring light.
On June 25, 2023, our James Webb Space Telescope made its first near-infrared observations of Saturn. The planet itself appears extremely dark at this infrared wavelength, since methane gas absorbs almost all the sunlight falling on the atmosphere. The icy rings, however, stay relatively bright, leading to Saturn’s unusual appearance in this image.
This new image of Saturn clearly shows details within the planet’s ring system, several of the planet’s moons (Dione, Enceladus, and Tethys), and even Saturn’s atmosphere in surprising and unexpected detail.
These observations from Webb are just a hint at what this observatory will add to Saturn’s story in the coming years as the science team delves deep into the data to prepare peer-reviewed results.
Download the full-resolution image, both labeled and unlabeled, from the Space Telescope Science Institute.
Make sure to follow us on Tumblr for your regular dose of space!
When the first Apollo astronauts returned from the Moon in 1969, the Moon’s surface was thought to be completely dry. Over the last 20 years, orbital and impactor missions confirmed water ice is present inside dark, permanently shadowed craters around the poles. But could water survive in the Moon’s sunnier regions? Using SOFIA, the world’s largest flying observatory, we found water on a sunlit lunar surface for the first time. The discovery suggests water may be distributed across the Moon’s surface, which is a whopping 14.6 million square miles. Scientists think the water could be stored inside glass beadlike structures within the soil that can be smaller than the tip of a pencil. The amount of water detected is equivalent to about a 12-ounce bottle trapped in a cubic meter volume of soil. While that amount is 100 times less than what’s found in the Sahara Desert, discovering even small amounts raises new questions about how this precious resource is created and persists on the harsh, airless lunar surface. Learn more about the discovery:
We are eager to learn all we can about the presence of water in advance of sending the first woman and next man to the lunar surface in 2024 under our Artemis program. What we learn on and around the Moon will help us take the next giant leap – sending astronauts to Mars.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
This winter, our scientists and engineers traveled to the world's northernmost civilian town to launch rockets equipped with cutting-edge scientific instruments.
This is the beginning of a 14-month-long campaign to study a particular region of Earth's magnetic field — which means launching near the poles. What's it like to launch a science rocket in these extreme conditions?
Our planet is protected by a natural magnetic field that deflects most of the particles that flow out from the Sun — the solar wind — away from our atmosphere. But near the north and south poles, two oddities in Earth's magnetic field funnel these solar particles directly into our atmosphere. These regions are the polar cusps, and it turns out they're the ideal spot for studying how our atmosphere interacts with space.
The scientists of the Grand Challenge Initiative — Cusp are using sounding rockets to do their research. Sounding rockets are suborbital rockets that launch to a few hundred miles in altitude, spending a few minutes in space before falling back to Earth. That means sounding rockets can carry sensitive instruments above our atmosphere to study the Sun, other stars and even distant galaxies.
They also fly directly through some of the most interesting regions of Earth's atmosphere, and that's what scientists are taking advantage of for their Grand Challenge experiments.
One of the ideal rocket ranges for cusp science is in Ny-Ålesund, Svalbard, off the coast of Norway and within the Arctic circle. Because of its far northward position, each morning Svalbard passes directly under Earth's magnetic cusp.
But launching in this extreme, remote environment puts another set of challenges on the mission teams. These launches need to happen during the winter, when Svalbard experiences 24/7 darkness because of Earth's axial tilt. The launch teams can go months without seeing the Sun.
Like for all rocket launches, the science teams have to wait for the right weather conditions to launch. Because they're studying upper atmospheric processes, some of these teams also have to wait for other science conditions, like active auroras. Auroras are created when charged particles collide with Earth’s atmosphere — often triggered by solar storms or changes in the solar wind — and they're related to many of the upper-atmospheric processes that scientists want to study near the magnetic cusp.
But even before launch, the extreme conditions make launching rockets a tricky business — it's so cold that the rockets must be encased in styrofoam before launch to protect them from the low temperatures and potential precipitation.
When all is finally ready, an alarm sounds throughout the town of Ny-Ålesund to alert residents to the impending launch. And then it's up, up and away! This photo shows the launch of the twin VISIONS-2 sounding rockets on Dec. 7, 2018 from Ny-Ålesund.
These rockets are designed to break up during flight — so after launch comes clean-up. The launch teams track where debris lands so that they can retrieve the pieces later.
The next launch of the Grand Challenge Initiative is AZURE, launching from Andøya Space Center in Norway in March 2019.
For even more about what it's like to launch science rockets in extreme conditions, check out one scientist's notes from the field: https://go.nasa.gov/2QzyjR4
For updates on the Grand Challenge Initiative and other sounding rocket flights, visit nasa.gov/soundingrockets or follow along with NASA Wallops and NASA heliophysics on Twitter and Facebook.
@NASA_Wallops | NASA’s Wallops Flight Facility | @NASASun | NASA Sun Science
Our Juno spacecraft will fly over Jupiter’s Great Red Spot on July 10 at 10:06 p.m. EDT. This will be humanity’s first up-close and personal view of the gas giant’s iconic 10,000-mile-wide storm, which has been monitored since 1830 and possibly existing for more than 350 years.
The data collection of the Great Red Spot is part of Juno’s sixth science flyby over Jupiter’s mysterious cloud tops. Perijove (the point at which an orbit comes closest to Jupiter’s center) will be July 10 at 9:55 p.m. EDT.
At the time of perijove, Juno will be about 2,200 miles above the planet’s cloud tops. Eleven minutes and 33 seconds later…Juno will have covered another 24,713 miles and will be directly above the coiling crimson cloud tops of the Great Red Spot. The spacecraft will pass about 5,600 miles above its clouds.
When will we see images from this flyby?
During the flyby, all eight of the spacecraft’s instruments will be turned on, as well as its imager, JunoCam. Because the spacecraft will be collecting data with its Microwave Radiometer (MWR), which measures radio waves from Jupiter’s deep atmosphere, we cannot downlink information during the pass. The MWR can tell us how much water there is and how material is moving far below the cloud tops.
During the pass, all data will be stored on-board…with a downlink planned afterwards. Once the downlink begins, engineering data from the spacecraft’s instruments will come to Earth first, followed by images from JunoCam.
The unprocessed, raw images will be located HERE, on approximately July 14. Follow @NASAJuno on Twitter for updates.
Did you know you can download and process these raw images?
We invite the public to act as a virtual imaging team…participating in key steps of the process, from identifying features of interest to sharing the finished images online. After JunoCam data arrives on Earth, members of the public can process the images to create color pictures. The public also helps determine which points on the planet will be photographed. Learn more about voting on JunoCam’s next target HERE.
JunoCam has four filters: red, green, blue and near-infrared. We get red, green and blue strips on one spacecraft rotation (the spacecraft rotation rate is 2 revolutions per minute) and the near-infrared strips on the second rotation. To get the final image product, the strips must be stitched together and the colors lined up.
Anything from cropping to color enhancing to collaging is fair game. Be creative!
Submit your images to Juno_outreach@jpl.nasa.gov to be featured on the Mission Juno website!
Credit: Sean Doran (More)
Credit: Amelia Carolina (More)
Credit: Michael Ranger (More)
Credit: Jason Major (More)
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Work continued aboard the International Space Station. Spacewalkers Shane Kimbrough and Peggy Whitson used the station’s robotic arm to move the Pressurized Mating Adapter-3 on March 24 to move a module to accommodate U.S. commercial spacecraft carrying astronauts on future missions. They continued this work on March 30. Another spacewalk to complete the work is slated for April.
Engineers at our Goddard Space Flight Center Center complete vibration and acoustic tesing on the James Webb Space Telescope, which was subjected to earsplitting noice and shaken 50-100 times per second to simulate the rigors of launch.
Data from our MAVEN, our Mars Atmosphere and Volatile EvolutioN, and published in the journal Science, concludes that solar wind and radiation are responsible for stripping Mars of its atmosphere and turning it into the frigid desert world it is today.
Most of the gas ever in the Red Planet’s atmosphere has been lost to space. The MAVEN team focused on the gas argon, estimating that 65% of it has been stripped from the planet. In 2015, the science team determined that atmospheric gas continues to be lost to space.
We participated in a Women’s History Month celebration and the Smithsonian Air and Space Museum. The program feature NASA astronauts and engineers. The were also projects to get girls interested in sciene, technology, engineering and math, or STEM, education. There was also a screening of the film ‘Hidden Figures,’ which relates the story of African-American female mathematicians who were instrumental in the agency’s efforts to launch humans to space.
We’ve released our latest free NASA app on a whole new platform--Amazon Fire TV! The app is already available for Apple TV, iOS, and Android.Viewers can stream NASA TV, access 16,000+, download video and more!
Download the app: www.nasa.gov/nasaapp
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Space Launch System rocket is on the move this summer — literally. With the help of big and small businesses in all 50 states, various pieces of hardware are making their way to Louisiana for manufacturing, to Alabama for testing, and to Florida for final assembly. All of that work brings us closer to the launch of Artemis 1, SLS and Orion’s first mission to the Moon.
The SLS rocket will feature the largest core stage we have ever built before. It’s so large, in fact, that we had to modify and refurbish our barge Pegasus to accommodate the massive load. Pegasus was originally designed to transport the giant external tanks of the space shuttles on the 900-mile journey from our rocket factory, Michoud Assembly Facility, in New Orleans to Kennedy Space Center in Florida. Now, our barge ferries test articles from Michoud along the river to Huntsville, Alabama, for testing at Marshall Space Flight Center. Just a week ago, the last of four structural test articles — the liquid oxygen tank — was loaded onto Pegasus to be delivered at Marshall for testing. Once testing is completed and the flight hardware is cleared for launch, Pegasus will again go to work — this time transporting the flight hardware along the Gulf Coast from New Orleans to Cape Canaveral.
The massive, five-segment solid rocket boosters each weigh 1.6 million pounds. That’s the size of four blue whales! The only way to move the components for the powerful boosters on SLS from Promontory, Utah, to the Booster Fabrication Facility and Vehicle Assembly Building at Kennedy is by railway. That’s why you’ll find railway tracks leading from these assembly buildings and facilities to and from the launch pad, too. Altogether, we have about 38-mile industrial short track on Kennedy alone. Using a small fleet of specialized cars and hoppers and existing railways across the US, we can move the large, bulky equipment from the Southwest to Florida’s Space Coast. With all the motor segments complete in January, the last booster motor segment (pictured above) was moved to storage in Utah. Soon, trains will deliver all 10 segments to Kennedy to be stacked with the booster forward and aft skirts and prepared for flight.
A regular passenger airplane doesn’t have the capacity to carry the specialized hardware for SLS and our Orion spacecraft. Equipped with a unique hinged nose that can open more than 200 degrees, our Super Guppy airplane is specially designed to carry the hulking hardware, like the Orion stage adapter, to the Cape. That hinged nose means cargo is actually loaded from the front, not the back, of the airplane. The Orion stage adapter, delivered to Kennedy in 2018, joins to the rocket’s interim cryogenic propulsion stage, which will give our spacecraft the push it needs to go to the Moon on Artemis 1. It fit perfectly inside the Guppy’s cargo compartment, which is 25 feet tall and 25 feet wide and 111 feet long.
In the end, all roads lead to Kennedy, and the star of the transportation show is really the “crawler.” Rolling along at a delicate 1 MPH when it’s loaded with the mobile launcher, our two crawler-transporters are vital in bringing the fully assembled rocket to the launchpad for each Artemis mission. Each the size of a baseball field and powered by locomotive and large power generator engines, one crawler-transporter is able to carry 18 million pounds on the nine-mile journey to the launchpad. As of June 27, 2019, the mobile launcher atop crawler-transporter 2 made a successful final test roll to the launchpad, clearing the transporter and mobile launcher ready to carry SLS and Orion to the launchpad for Artemis 1.
It takes a lot of team work to launch Artemis 1. We are partnering with Boeing, Northrop Grumman and Aerojet Rocketdyne to produce the complex structures of the rocket. Every one of our centers and more than 1,200 companies across the United States support the development of the rocket that will launch Artemis 1 to the Moon and, ultimately, to Mars. From supplying key tools to accelerate the development of the core stage to aiding the transportation of the rocket closer to the launchpad, companies like Futuramic in Michigan and Major Tool & Machine in Indiana, are playing a vital role in returning American astronauts to the Moon. This time, to stay. To stay up to date with the latest SLS progress, click here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
November weather can be challenging for backyard astronomers, but the moon is a reliable target, even when there are clouds.
Did you know that the moon takes about 29 days to go around the Earth once? It also takes the moon about 29 days to spin on its axis. This causes the same side of the moon to always face Earth.
On Nov. 3, the moon reaches last quarter when it rises at midnight and sets at noon. This is a great time to see the moon in the morning sky.
On Nov. 11, the new moon isn’t visible, because it’s between Earth and the sun, and the unlit side faces Earth. In the days after the new moon, the slender crescent gets bigger and brighter. Look just after sunset on Nov. 13 and 14 near the setting sun in the western sky.
The next phase on Nov. 19 is called the first quarter, because the moon has traveled one quarter of its 29-day orbit around Earth. The moon rises at noon and sets at midnight, so you can see it in the afternoon sky. It will rise higher in the sky after dark. That’s when you can look for the areas where four of the six Apollo missions landed on the moon! You won’t see the landers, flag or footprints, but it’s fun and easy to see these historic places with your own eyes or with binoculars.
To see the area: Look for three dark, smooth maria, or seas. The middle one is the Sea of Tranquility. Apollo 11 landed very near a bright crater on the edge of this mare in 1969. The Apollo 15, 16 and 17 landing areas form the points of a triangle above and below the Apollo 11 site.
On Nov. 25, you can see the full moon phase, which occurs on the 14th day of the lunar cycle. The moon will rise at sunset and will be visible all night long, setting at sunrise.
On Thanksgiving (Nov. 26), the 15-day-old moon will rise an hour after sunset. You may even see some interesting features! And this is a great time to see the impact rays of some of the larger craters.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What, in your opinion, is Perseverance's most groundbreaking experiment/ instrument?
The sun is a star, a hot ball of glowing gases at the heart of our solar system. Its influence extends far beyond the orbits of distant Neptune and Pluto. Without the sun’s intense energy and heat, there would be no life on Earth. And though it is special to us, there are billions of stars like our sun scattered across the Milky Way galaxy.
If the sun were as tall as a typical front door, the Earth would be the size of a U.S. nickel
The temperature at the sun’s core is about 27 million degrees Fahrenheit
Our sun is more massive than the average star in its neighborhood. Nearly 90% of stars are less massive, making them cooler and dimmer
The sun contains 99.9% of all matter in our solar system
During a single second, the sun converts 4 million tons of matter to pure energy
It would take about 1 million Earths to fill the sun if it were a hollow ball
The sun rotates on its axis approximately once every 27 days
The sun is 93 million miles away from Earth and is almost 5 billion years old
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What's a SPOC? Isn't that a star trek character?
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts