Prizes, awards and a year’s worth of bragging rights are at stake during our annual Human Exploration Rover Challenge. Year after year, student teams from across the world design, build and race rovers against the clock and each other.
With a space-themed obstacle course, unique rovers, competitive racing, our exhibits and dozens of international teams… it’s everything cool about STEM (science, technology, engineering and mathematics) and space exploration.
1. Bumps, Bruises and Battle Scars
Our space-themed obstacle course often brings racers to their knees, literally. This daunting three-quarter-mile long course is difficult to traverse and isn’t for the faint of heart. It uses both lunar and Mars-themed obstacles to simulate the types of terrain found on distant planets, asteroids or moons.
Plus, teams must race their rovers in, on and around full-scale rockets and space vehicle exhibits on display at the U.S. Space & Rocket Center – the official visitor center for NASA’s Marshall Space Flight Center, both in Huntsville, Alabama. See just how difficult and wild the course can be in our Flickr gallery.
2. Homemade Wheels Only
Rover teams must design and fabricate their own original, or “homemade” wheels. In-Situ Resource Utilization is an important component for our future missions to Mars, asteroids or other planets.
Astronauts can never simply purchase wheels at the store… and neither can our rover teams. Teams must not use any “off-the-shelf” wheels on their rover. By wheels, this means any component used for contact, traction or mobility on the surface of the obstacle course, including, but not limited to wheels, tracks, treads or belts.
And, as in years past, teams are not allowed to incorporate inflated (or un-inflated) pneumatic tires. Inflated tires would be considered an off-the-shelf product, not eligible under the current rules.
3. New “Sample Retrieval” Component Added
Teams may choose to compete in this optional challenge, collecting four samples (liquid, small pebbles, large rocks and soil) using a mechanical arm or a grabber they design and build. Teams must collect a soil sample and liquid sample while driving their rover, as well as collect rock samples (both large and small) while off the rover, all within a 25-minute time limit. The “Sample Retrieval” challenge highlights our deep-space exploration goals. Teams competing are eligible for the $250 prize awarded to the winner of each high school and college/university division.
4. Caution: Real STEM @work
The sights and sounds of welding, grinding and computer programming are prevalent in this hands-on, experiential activity where students solve similar problems faced by our workforce. Rover Challenge provides a unique test-bed to get students involved in real-world research and development. Their progress and success may glean potential technologies for future exploration of Mars and beyond.
5. Draws Inspiration from Apollo and Journey to Mars
Rover Challenge was inspired by the historic success of the lunar rovers from the Apollo missions, each one built by engineers and scientists at NASA Marshall. While we continue to honor our past achievements, we now highlight future accomplishments on deep-space exploration missions to Mars, asteroids or other planets. The addition of the “Sample Return” component and the Martian obstacles emphasize our commitment toward space exploration.
6. Our International Spirit is Alive and Well
Just like the International Space Station; we bring the best of several nations together to promote and celebrate space exploration. Nearly 80 teams are coming from as far away as Italy, Germany, India, Mexico, Columbia and Russia, as well as more “local” talent from the United States and Puerto Rico. View this year’s registered teams HERE.
7. Real-time Racing on Social Media
From start to finish, each racing rover team will be broadcast, live, on the Marshall Center’s Ustream channel. Plus, enjoy real-time race updates, results and awards by following Rover Challenge Twitter: @RoverChallenge
NASA’s Human Exploration Rover Challenge will take place at the U.S. Space & Rocket Center in Huntsville, Alabama, April 8-9. For event details, rules, course information and more, please visit: http://www.nasa.gov/roverchallenge
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
This is where they 3D print cool pieces that are needed for the ISS! They use cool carbon fiber materials to make the final product look smooth and flawless. They are also 3D printing that payload attachment fitting for the SLS Block 1B rocket!! I took a video of it actually printing so be on the lookout for that!
The Transiting Exoplanet Survey Satellite (TESS) is the next step in the search for planets outside of our solar system, including those that could support life. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits.
TESS will survey 200,000 of the brightest stars near the sun to search for transiting exoplanets. The mission is scheduled to launch in 2018.
The TESS launch date is NLT June 2018 (the current working launch date is April 2018).
Music: "Prototype" and "Trial" both from Killer Tracks. Credit: NASA’s Goddard Space Flight Center
NASA Goddard Space Flight Center
A new robotic arm for assembling spacecraft and exploration platforms in space flexed its muscle in a successful ground demonstration Jan. 19.
The device, called the Tension Actuated in Space MANipulator (TALISMAN) was tested in the Structures and Materials Test Laboratory at NASA’s Langley Research Center in Hampton, Virginia.
TALISMAN is just one component of the Commercial Infrastructure for Robotic Assembly and Servicing (CIRAS). In this demonstration, the team manipulated the newer, longer arm back and forth from folded to extended positions to demonstrate that it is fully operational and ready for more comprehensive testing.
“The demonstration we accomplished last week was the rough equivalent of what the Navy calls a “shakedown cruise,” said John Dorsey, NASA principal investigator for CIRAS.
The tests will get progressively more difficult over the coming months as more detailed tasks are demanded of the robots. Future tests include not only a series of demonstrations exercising TALISMAN’s ability to move and manipulate objects along a truss, but also a demonstration of the NASA Intelligent Jigging and Assembly Robot (NINJAR) and the Strut Assembly, Manufacturing, Utility & Robotic Aid (SAMURAI) building two truss bays from pieces.
CIRAS is a collaboration with industry partner Orbital ATK of Dulles, Virginia, aimed at developing a “toolbox” of capabilities for use in servicing, refueling, and ultimately the construction of assets on orbit.
Advanced in-space assembly technologies will provide a more cost-effective way to build spacecraft and future human exploration platforms in space, such as the tended spaceport between the Earth and the Moon the agency is looking to build that would serve as a gateway to deep space and the lunar surface.
One of the biggest benefits of in-space assembly is the ability to launch the necessary material and components in tightly packed envelopes, given rockets have limited capacity with strict requirements on the size and shape of pre-assembled items being launched into orbit.
“It’s the difference between taking your new bedroom suite home in a box from IKEA using your Honda Civic and hiring a large box truck to deliver the same thing that was fully assembled at a factory. Space is a premium on launches,” said Chuck Taylor, CIRAS project manager at Langley.
Being able to build and assemble components in space will allow more affordable and more frequent science and discovery missions in Earth orbit, across the solar system and beyond.
CIRAS is made up of several components. TALISMAN, the long-reach robotic arm technology, was developed and patented at Langley. TALISMAN moves SAMURAI, which is like the hand that brings truss segments to NINJAR, the robotic jig that holds the truss segments in place perfectly at 90 degrees while they are permanently fastened using electron beam welding to join together 3D printed titanium truss corner joints to titanium fittings at the strut ends. NINJAR was built almost entirely by interns in the lab. The students have done incredible things, Taylor said.
“We couldn't have done what we’ve done without them,” he added.
CIRAS is a part of the In-Space Robotic Manufacturing and Assembly project portfolio, managed by NASA’s Technology Demonstration Missions Program and sponsored by NASA’s Space Technology Mission Directorate.
The CIRAS team includes prime contractor Orbital ATK, supported by its wholly-owned subsidiary, Space Logistics, LLC; along with NASA Langley; NASA’s Glenn Research Center in Cleveland, Ohio; NASA’s Goddard Space Flight Center in Greenbelt, Maryland; and the U.S. Naval Research Laboratory in Washington, D.C. If Orbital and Langley are successful in this spring’s series of demonstrations, they may be awarded a second contract to demonstrate these same capabilities on orbit.
To learn more about NASA's Space Technology Mission Directorate, visit:
https://www.nasa.gov/spacetech
Kristyn Damadeo NASA Langley Research Center
NASA Administrator Charles Bolden, right, and Langley Research Center Director, Dr. David E. Bowles, left, poses for a photo with staff dressed in space suits on Langley Research Center's Centennial float on Thursday, Dec. 1, 2016, at Langley Research Center in Hampton, VA.
Photo Credit: NASA Langley Research Center
Click on the link to the full article to see how NASA’s Langley Research Center is changing the way we conceptualize commercial flight!
Edwards AFB CA (SPX) Feb 19, 2016 NASA is researching ideas that could lead to developing an electric propulsion-powered aircraft that would be quieter, more efficient and environmentally friendly than today’s commuter aircraft. The proposed piloted experimental airplane is called Sceptor, short for the Scalable Convergent Electric Propulsion Technology and Operations Research. The concept involves removing the wing from a Full article
Posing in the wind tunnel. Via NASA Langley.
NASA is calling all space enthusiasts to send their artistic endeavors on a journey aboard NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft. This will be the first U.S. mission to collect a sample of an asteroid and return it to Earth for study.
OSIRIS-REx is scheduled to launch in September and travel to the asteroid Bennu. The #WeTheExplorers campaign invites the public to take part in this mission by expressing, through art, how the mission’s spirit of exploration is reflected in their own lives. Submitted works of art will be saved on a chip on the spacecraft. The spacecraft already carries a chip with more than 442,000 names submitted through the 2014 “Messages to Bennu” campaign.
“The development of the spacecraft and instruments has been a hugely creative process, where ultimately the canvas is the machined metal and composites preparing for launch in September,” said Jason Dworkin, OSIRIS-REx project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It is fitting that this endeavor can inspire the public to express their creativity to be carried by OSIRIS-REx into space.”
A submission may take the form of a sketch, photograph, graphic, poem, song, short video or other creative or artistic expression that reflects what it means to be an explorer. Submissions will be accepted via Twitter and Instagram until March 20. For details on how to include your submission on the mission to Bennu, go to:
http://www.asteroidmission.org/WeTheExplorers
“Space exploration is an inherently creative activity,” said Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson. “We are inviting the world to join us on this great adventure by placing their art work on the OSIRIS-REx spacecraft, where it will stay in space for millennia.”
The spacecraft will voyage to the near-Earth asteroid Bennu to collect a sample of at least 60 grams (2.1 ounces) and return it to Earth for study. Scientists expect Bennu may hold clues to the origin of the solar system and the source of the water and organic molecules that may have made their way to Earth.
Goddard provides overall mission management, systems engineering and safety and mission assurance for OSIRIS-REx. The University of Arizona, Tucson leads the science team and observation planning and processing. Lockheed Martin Space Systems in Denver is building the spacecraft. OSIRIS-REx is the third mission in NASA's New Frontiers Program. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages New Frontiers for the agency's Science Mission Directorate in Washington.
For more information on OSIRIS-Rex, visit:
http://www.nasa.gov/osiris-rex
Two Hampton Roads high schools will soon have their creations judged by NASA to see if they make it aboard the International Space Station. One is a food recipe for astronauts. The other is hardware for the space station.
Students from Phoebus High School prepare their breakfast dish at HUNCH's Preliminary Culinary Challenge at NASA's Langley Research Center.
Credits: NASA/David C. Bowman
Both projects are part of a NASA program called HUNCH, or High school students United with NASA to Create Hardware.
NASA’s Langley Research Center in Hampton, Virginia, hosted a preliminary culinary challenge March 5, where two schools cooked up a breakfast entrée. The shrimp and grits with gouda cheese dish from Phoebus High School in Hampton made it to the final competition at NASA’s Johnson Space Center in Houston scheduled for April 26.
Their work will be judged by Johnson Food Lab personnel, industry professionals, the space station program office, and astronauts for quality and taste. They’ll also be rated on a research paper and presentation video. The winning entree will be created by the Johnson Space Food Lab and sent up to the space station for astronauts to enjoy.
Space Hardware
Poquoson High School student Travis Redman, left, talks with Glenn Johnson, a design engineer at NASA's Johnson Space Center, about an astronaut boot that would lock in place preventing floating in a no gravity environment.
Credits: NASA/George Homich
Langley also hosted a critical design review March 6, when four schools showed off the real-world products they fabricated to tackle challenges faced by astronauts living in space. The team from Poquoson High School in Poquoson, Virginia, was selected as a finalist and faces a final design and prototyping review April 25 at Johnson.
The hardware includes a pin kit, can squisher, exercise harness, crew reminder tool, location app tool, and hygiene caddy. Many of the hardware projects are items personally requested by space station crew.
The North Carolina School of Science and Mathematics, who also presented their projects at Langley, will join Poquoson High to present their works at Johnson. The projects the team from the Durham-based school had were an augmented reality object identification annotation tool, automatic location stowage system, and a single point exercise harness.
“The HUNCH Program can change the trajectory of a student’s life, by providing various avenues beyond the STEM (science, technology, engineering and math) field and opportunities to participate in the global effort to research in space,” said Yolanda Watford Simmons, manager of Langley’s HUNCH program.
In 2015, a culinary team from Phoebus High won the culinary challenge and their entrée, Jamaican rice and beans with coconut milk, is now included in an astronaut cookbook. Read more on their success here.
For more information on HUNCH, go here.
Eric Gillard NASA Langley Research Center
What would the future look like if people were regularly visiting to other planets and moons? These travel posters give a glimpse into that imaginative future. Take a look and choose your destination:
Our Voyager mission took advantage of a once-every-175-year alignment of the outer planets for a grand tour of the solar system. The twin spacecraft revealed details about Jupiter, Saturn, Uranus and Neptune – using each planet’s gravity to send them on to the next destination.
Our Mars Exploration Program seeks to understand whether Mars was, is, or can be a habitable world. This poster imagines a future day when we have achieved our vision of human exploration of the Red Planet and takes a nostalgic look back at the great imagined milestones of Mars exploration that will someday be celebrated as “historic sites.”
There’s no place like home. Warm, wet and with an atmosphere that’s just right, Earth is the only place we know of with life – and lots of it. Our Earth science missions monitor our home planet and how it’s changing so it can continue to provide a safe haven as we reach deeper into the cosmos.
The rare science opportunity of planetary transits has long inspired bold voyages to exotic vantage points – journeys such as James Cook’s trek to the South Pacific to watch Venus and Mercury cross the face of the sun in 1769. Spacecraft now allow us the luxury to study these cosmic crossings at times of our choosing from unique locales across our solar system.
Ceres is the closest dwarf planet to the sun. It is the largest object in the main asteroid belt between Mars and Jupiter, with an equatorial diameter of about 965 kilometers. After being studied with telescopes for more than two centuries, Ceres became the first dwarf planet to be explored by a spacecraft, when our Dawn probe arrived in orbit in March 2015. Dawn’s ongoing detailed observations are revealing intriguing insights into the nature of this mysterious world of ice and rock.
The Jovian cloudscape boasts the most spectacular light show in the solar system, with northern and southern lights to dazzle even the most jaded space traveler. Jupiter’s auroras are hundreds of times more powerful than Earth’s, and they form a glowing ring around each pole that’s bigger than our home planet.
The discovery of Enceladus’ icy jets and their role in creating Saturn’s E-ring is one of the top findings of the Cassini mission to Saturn. Further Cassini discoveries revealed strong evidence of a global ocean and the first signs of potential hydrothermal activity beyond Earth – making this tiny Saturnian moon one of the leading locations in the search for possible life beyond Earth.
Frigid and alien, yet similar to our own planet billions of years ago, Saturn’s largest moon, Titan has a thick atmosphere, organic-rich chemistry and surface shaped by rivers and lakes of liquid ethane and methane. Our Cassini orbiter was designed to peer through Titan’s perpetual haze and unravel the mysteries of this planet-like moon.
Astonishing geology and the potential to host the conditions for simple life making Jupiter’s moon Europa a fascinating destination for future exploration. Beneath its icy surface, Europa is believed to conceal a global ocean of salty liquid water twice the volume of Earth’s oceans. Tugging and flexing from Jupiter’s gravity generates enough heat to keep the ocean from freezing.
You can download free poster size images of these thumbnails here: http://www.jpl.nasa.gov/visions-of-the-future/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com