See What Goes On Behind The Gates Of The NASA Langley Research Center (LaRC)!

See what goes on behind the gates of the NASA Langley Research Center (LaRC)!

More Posts from Nasalangley and Others

8 years ago
Orion Was Making Waves At @nasalangley This Week
Orion Was Making Waves At @nasalangley This Week

Orion was making waves at @nasalangley this week

6 years ago

NASA Langley researchers are working on various projects to improve commercial airliner cockpit simulators to reduce the risk of loss-of-control in flight. This includes improving simulator fidelity for stall training, and also includes a partnership with the U.S. Navy, at the Disorientation Research Device Facility in Dayton, Ohio, to develop and evaluate synthetic vision displays to help pilots recover from upsets or unusual attitudes.

NASA Langley Research Center


Tags
7 years ago

What's Up? - May 2018

image

What’s Up For May?

The Moon and Saturn meet Mars in the morning as our InSight spacecraft launches to the Red Planet on May 5!

image

You won’t want to miss red Mars in the southern morning skies this month.

image

InSight, our first mission to explore Mars’ deep interior, launches on May 5th with a launch window that begins at 4:05 a.m. PDT and lasts for two hours.

image

Some lucky viewers in central and southern California and even parts of the Mexican Pacific coast will get a chance to see the spacecraft launch with their unaided eyes AND its destination, Mars, at the same time.

image

Mars shines a little brighter than last month, as it approaches opposition on July 27th. That’s when Mars and the Sun will be on opposite sides of the Earth. This will be Mars’ closest approach to Earth since 2003! 

image

Compare the planet’s increases in brightness with your own eyes between now and July 27th. 

image

The Eta Aquarid meteor shower will be washed out by the Moon this month, but if you are awake for the InSight launch anyway, have a look. This shower is better viewed from the southern hemisphere, but medium rates of 10 to 30 meteors per hour MAY be seen before dawn.

image

Of course, you could travel to the South Pacific to see the shower at its best!

image

There’s no sharp peak to this shower–just several nights with good rates, centered on May 6th. 

image

Jupiter reaches opposition on May 9th, heralding the best Jupiter-observing season, especially for mid-evening viewing. That’s because the king of the planets rises at sunset and sets at dawn. 

image

Wait a few hours after sunset, when Jupiter is higher in the sky, for the best views. If you viewed Jupiter last month, expect the view to be even better this month!

Watch the full What’s Up for May Video: 

There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.   

7 years ago

Why We Celebrate Search and Rescue Technologies on 4/06

Today (4/06), we celebrate the special radio frequency transmitted by emergency beacons to the international search and rescue network. 

This 406 MHz frequency, used only for search and rescue, can be “heard” by satellites hundreds of miles above the ground! The satellites then “forward” the location of the beacon back to Earth, helping first responders locate people in distress worldwide, whether from a plane crash, a boating accident or other emergencies.

Why We Celebrate Search And Rescue Technologies On 4/06

Our Search and Rescue office, based out of our Goddard Space Flight Center, researches and develops emergency beacon technology, passing the technology to companies who manufacture the beacons, making them available to the public at retail stores. The beacons are designed for personal, maritime and aviation use.

Why We Celebrate Search And Rescue Technologies On 4/06

The search and rescue network, Cospas-Sarsat, is an international program that ensures the compatibility of distress alert services with the needs of users. Its current space segment relies on instruments onboard low-Earth and geosynchronous orbiting satellites, hundreds to thousands of miles above us. 

Space instruments forward distress signals to the search and rescue ground segment, which is operated by partner organizations around the world! They manage specific regions of the ground network. For example, the National Oceanic and Atmospheric Administration (NOAA) operates the region containing the United States, which reaches across the Atlantic and Pacific Oceans as well as parts of Central and South America.

Why We Celebrate Search And Rescue Technologies On 4/06

NOAA notifies organizations that coordinate search and rescue efforts of a 406 MHz distress beacon’s activation and location. Within the U.S., the U.S. Air Force responds to land-based emergencies and the U.S. Coast Guard responds to water-based emergencies. Local public service organizations like police and fire departments, as well as civilian volunteers, serve as first responders.

Why We Celebrate Search And Rescue Technologies On 4/06

Here at NASA, we research, design and test search and rescue instruments and beacons to refine the existing network. Aeronautical beacon tests took place at our Langley Research Center in 2015. Using a 240-foot-high structure originally used to test Apollo spacecraft, our Search and Rescue team crashed three planes to test the survivability of these beacons, developing guidelines for manufacturers and installation into aircraft.

Why We Celebrate Search And Rescue Technologies On 4/06

In the future, first responders will rely on a new constellation of search and rescue instruments on GPS systems on satellites in medium-Earth orbit, not hundreds, but THOUSANDS of miles overhead. These new instruments will enable the search and rescue network to locate a distress signal more quickly than the current system and achieve accuracy an order of magnitude better, from a half mile to approximately 300 feet. Our Search and Rescue office is developing second-generation 406 MHz beacons that make full use of this new system.

Why We Celebrate Search And Rescue Technologies On 4/06

We will also incorporate these second-generation beacons into the Orion Crew Survival System. The Advanced Next-Generation Emergency Locator (ANGEL) beacons will be attached to astronaut life preservers. After splashdown, if the Orion crew exits the capsule due to an emergency, these beacons will make sure we know the exact location of floating astronauts! Our Johnson Space Center is testing this technology for used in future human spaceflight and exploration missions.

Why We Celebrate Search And Rescue Technologies On 4/06

If you’re the owner of an emergency beacon, remember that beacon registration is free, easy and required by law. 

To register your beacon, visit: beaconregistration.noaa.gov

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

8 years ago

The James Webb Space Telescope

Like your backyard telescope, just MUCH more powerful

In 2018, we’re launching the world’s biggest space telescope ever - the James Webb Space Telescope. Webb will look back in time, studying the very first galaxies ever formed. While Webb doesn’t have a tube like your typical backyard telescope, because it’s also a reflector telescope it has many of the same parts! Webb has mirrors (including a primary and a secondary) just like a small reflector telescope, only its mirrors are massive (6.5 meters across) and coated in gold (which helps us reflect infrared light).

How does a reflector telescope work? Light is bounced from the primary to the smaller secondary mirror, and then directed to your eye:

image

Webb works pretty much the same way!

image

Taking the place of your eye to the eyepiece is a package of science instruments, including cameras and spectrographs, which will capture the light directed into them by the telescope’s mirrors.    

In order to install these instruments, we had to move the telescope structure upside down… an impressive sight!

image

Once Webb was in place on the assembly stand in the cleanroom, the team at Goddard Space Flight Center installed the instrument module (which we call the ISIM, or Integrated Science Instrument Module), with surgical precision. ISIM has four instruments, three of which were contributed by our partners, the European Space Agency and the Canadian Space Agency. 

All four will detect infrared light from stars and galaxies as far away as 13.6 billion light years. In addition to seeing these first sources of light in the early Universe, Webb will look at stars and planetary systems being formed in clouds of dust and gas. It will also examine the atmospheres of planets around other stars – perhaps we will find an atmosphere similar to Earth’s!

image

Here is an image with the science instruments being lowered into their spot behind the primary mirror. You can see the golden mirror is face-down.

Here’s another perspective of the instruments being fit into the telescope. 

image

What you’ve seen come together above is just the telescope part of the James Webb Space Telescope mission – next comes putting together the rest of the observatory. This includes our massive tennis court-sized sunshield (which acts like the tube-part of your backyard telescope, protecting the mirrors from stray light and heat), as well as the parts that do things like power the telescope and let us communicate with it.

image

It actually takes several weeks for Webb to completely unfold into its full deployment!

Follow us on Twitter, Facebook and Instagram for updates on our progress. You can also visit our site for more information: http://jwst.nasa.gov

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Photo Credit #1: NASA/Chris Gunn. Photo Credit #2: NASA/Desiree Stover

9 years ago

Nine Notable Facts About the NACA

Nine Notable Facts About The NACA

The National Advisory Committee for Aeronautics (NACA) reached a major milestone in 2015.

On March 3, the agency that in 1958 would dissolve and reform as NASA celebrated its centennial.

NASA Langley, established in 1917 as the Langley Memorial Aeronautical Laboratory, was the NACA's first field center.

During the March 24 talk, Tom Crouch, senior curator of aeronautics; John Anderson, curator of aerodynamics; and Roger Launius, associate director for collections and curatorial affairs discussed the formation of the NACA, the technological breakthroughs it generated, and the evolution of its research and development model.

Here are nine of the more interesting things they shared:

1. Charles Doolittle Walcott, a self-trained scientist and the man whose efforts led to the formation of the NACA, was best known not as an aeronautics expert, but as a paleontologist. "Throughout his long career," Crouch said, "he was really one of the most effective spokesmen for science and technology in the federal government."

2. Walcott was a good friend of aviation pioneer and Wright brothers rival Samuel Pierpont Langley, who was devastated in 1903 when his Aerodrome flying machine twice failed to take flight over the Potomoc River. Langley died in 1906. "One of Charles Doolittle Walcott's aims in life was to resurrect and honor the memory of his old friend Samuel Pierpont Langley," Crouch said — so much so that he once suggested naming all airplanes Langleys. Eventually, Walcott named the Langley Memorial Aeronautical Laboratory after his friend.

3. Prior to World War I, aeronautics was not a high priority for the U.S. government. On a list of the aeronautics appropriations for 14 countries in the period from 1908 to 1913, the United States was dead last with $435,000. That put the U.S. behind Brazil, Chile, Bulgaria, Spain and Greece. Topping the list: Germany, with $28 million.

4. In the late 1920s, Fred Weick, a Langley engineer, developed what became known as the NACA cowling, a type of fairing or cover used to reduce drag on aircraft engines. The cowling also improved engine cooling. In 1929, Weick won the Collier Trophy, U.S. aviation's more prestigious award, for this innovation.

5. By the 1930s, the world had entered a golden era of aeronautics — largely due to the NACA. "The NACA was aeronautical engineering," said Anderson. And some of the most important aeronautical innovations were taking place right here at Langley Research Center. It was during the 1930s that Langley aerodynamicist Eastman Jacobs developed a systematic way of designing an airfoil. That systematic design became known as the NACA airfoil, and aircraft makers worldwide began using it.

Nine Notable Facts About The NACA

In 1934, during a high-speed wind tunnel test at Langley, a researcher named John Stack captured the first ever photograph of a shockwave on an airfoil. Credits: NASA

6. Aeronautics researchers in the 1930s were struggling to determine the cause of a peculiar phenomenon — as an object approached the speed of sound, drag greatly increased and lift drastically reduced. In 1934, a young Langley researcher named John Stack figured out why by photographing a high-speed wind tunnel test of an airfoil. The photo captured the culprit — a shockwave. It was the first time a shockwave had ever been photographed on an airfoil. "This was a dramatic intellectual contribution of the NACA that a lot of people don't really appreciate," said Anderson.

7. The woman who developed the format and style guide for the NACA's technical reports was a physicist from North Dakota named Pearl Young. She came to Langley in 1922, the first professional woman employed at the center, and was appointed Langley's first Chief Technical Editor in 1929. "The technical memorandums … became the model worldwide for how to increase knowledge and make it available to the broadest base of people that can use it," said Launius.

8. The NACA used to host an annual Aircraft Engineering Research Conference at Langley. The conferences were "a who's who of anybody involved in aeronautics in the United States," said Launius. "This interchange of information, of ideas, of concerns, becomes the critical component to fueling the research processes that led to some of the great breakthroughs of the early period before World War II." Among the notable attendees at the 1934 conference were Orville Wright, Charles Lindbergh and Howard Hughes.

Nine Notable Facts About The NACA

A photo taken in Langley's Full Scale Tunnel during the 1934 Aircraft Engineering Research Conference at Langley. Orville Wright, Charles Lindbergh and Howard Hughes were in attendance. Credits: NASA

9. Following World War II, according to Launius, the NACA began to change its "model ever so slightly," making its first forays into public-private partnerships. Perhaps the earliest example of these partnerships was the Bell X-1, a joint project between the NACA, the U.S. Air Force and Bell Aircraft Company. The Bell X-1 became the first manned aircraft to break the sound barrier.


Tags
8 years ago
A Laser-Sharp View Of Blended Wing Body Plane Design

A Laser-Sharp View of Blended Wing Body Plane Design

Engineers at NASA's Langley Research Center in Hampton, Virginia, used lasers inside the 14- by 22-Foot Subsonic Tunnel to map how air flows over a Boeing Blended Wing Body (BWB) model – a greener, quieter airplane design under development. The name for the technique is called particle image velocimetry. If you look closely you can see the light bouncing off tracer particles. Cameras record the movement of those particles as the laser light pulses across the model. This allows researchers to accurately measure the flow over the model once the images are processed. A smoother flow over the wing means less fuel will be needed to power the aircraft.

Image credit: NASA/David C. Bowman

9 years ago
Curiosity Self-Portrait At Martian Sand Dune

Curiosity Self-Portrait at Martian Sand Dune

This self-portrait of NASA's Curiosity Mars rover shows the vehicle at "Namib Dune," where the rover's activities included scuffing into the dune with a wheel and scooping samples of sand for laboratory analysis.

The scene combines 57 images taken on Jan. 19, 2016, during the 1,228th Martian day, or sol, of Curiosity's work on Mars. The camera used for this is the Mars Hand Lens Imager (MAHLI) at the end of the rover's robotic arm.

Namib Dune is part of the dark-sand "Bagnold Dune Field" along the northwestern flank of Mount Sharp. Images taken from orbit have shown that dunes in the Bagnold field move as much as about 3 feet (1 meter) per Earth year.

The location of Namib Dune is show on a map of Curiosity's route athttp://mars.nasa.gov/msl/multimedia/images/?ImageID=7640. The relationship of Bagnold Dune Field to the lower portion of Mount Sharp is shown in a map at PIA16064.

The view does not include the rover's arm. Wrist motions and turret rotations on the arm allowed MAHLI to acquire the mosaic's component images. The arm was positioned out of the shot in the images, or portions of images, that were used in this mosaic. This process was used previously in acquiring and assembling Curiosity self-portraits taken at sample-collection sites, including "Rocknest" (PIA16468), "Windjana" (PIA18390) and "Buckskin" (PIA19807).

For scale, the rover's wheels are 20 inches (50 centimeters) in diameter and about 16 inches (40 centimeters) wide.

MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover.

More information about Curiosity is online at http://www.nasa.gov/msl andhttp://mars.jpl.nasa.gov/msl/.


Tags
9 years ago

NASA Begins Work to Build a Quieter Supersonic Passenger Jet

The return of supersonic passenger air travel is one step closer to reality with NASA's award of a contract for the preliminary design of a "low boom" flight demonstration aircraft. This is the first in a series of 'X-planes' in NASA's New Aviation Horizons initiative, introduced in the agency's Fiscal Year 2017 budget.

NASA Administrator Charles Bolden announced the award at an event Monday at Ronald Reagan Washington National Airport in Arlington, Virginia.

The return of supersonic passenger travel is one step closer to reality with NASA's award of a contract for the preliminary design of a low boom flight demonstrator aircraft. This is the first in a series of X-planes in NASA's New Aviation Horizons initiative, introduced in the agency’s Fiscal Year 2017 budget.Credits: NASA

"NASA is working hard to make flight cleaner, greener, safer and quieter – all while developing aircraft that travel faster, and building an aviation system that operates more efficiently," said Bolden. "To that end, it's worth noting that it's been almost 70 years since Chuck Yeager broke the sound barrier in the Bell X-1 as part of our predecessor agency's high speed research. Now we're continuing that supersonic X-plane legacy with this preliminary design award for a quieter jet that may break the barrier to accessible, affordable supersonic passenger flight."

This is an artist’s concept of a possible Low Boom Flight Demonstration Quiet Supersonic Transport (QueSST) X-plane design. The award of a preliminary design contract is the first step towards the possible return of supersonic passenger travel – but this time quieter and more affordable.Credits: Lockheed Martin

NASA selected a team led by Lockheed Martin Aeronautics Company of Palmdale, California, to complete a preliminary design for Quiet Supersonic Technology (QueSST). The work will be conducted under a task order against the Basic and Applied Aerospace Research and Technology (BAART) contract at NASA's Langley Research Center in Hampton, Virginia.

After conducting feasibility studies and working to better understand acceptable sound levels across the country, NASA's Commercial Supersonic Technology Project asked industry teams to submit design concepts for a piloted test aircraft that can fly at supersonic speeds, creating a supersonic "heartbeat" – a soft thump rather than the disruptive boom currently associated with supersonic flight.

"Developing, building and flight testing a quiet supersonic X-plane is the next logical step in our path to enabling the industry's decision to open supersonic travel for the flying public," said Jaiwon Shin, associate administrator for NASA's Aeronautics Research Mission.

Lockheed Martin will receive about $20 million over 17 months for QueSST preliminary design work. The Lockheed Martin team includes subcontractors GE Aviation of Cincinnati and Tri Models Inc. of Huntington Beach, California.

The company will develop baseline aircraft requirements and a preliminary aircraft design with specifications, and provide supporting documentation for concept formulation and planning. This documentation would be used to prepare for the detailed design, building and testing of the QueSST jet. Performance of this preliminary design also must undergo analytical and wind tunnel validation.

The detailed design and building of the QueSST aircraft, conducted under the NASA Aeronautics Research Mission Directorate's Integrated Aviation Systems Program, will fall under a future contract competition. In addition to design and building, this Low Boom Flight Demonstration (LBFD) phase of the project also will include validation of community response to the new, quieter supersonic design.

NASA's 10-year New Aviation Horizons initiative has the ambitious goals of reducing fuel use, emissions and noise through innovations in aircraft design, ground operations and the national air transportation system.

The New Aviation Horizons X-planes will typically be about half-scale of a production aircraft and likely are to be piloted. Design-and-build will take several years with aircraft starting their flight campaign around 2020, depending on funding.

For more information about NASA's aeronautics research, visit:

www.nasa.gov/aero


Tags
6 years ago

5 Out-of-This World Technologies Developed for Our Webb Space Telescope

Our James Webb Space Telescope is the most ambitious and complex space science observatory ever built. It will study every phase in the history of our universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

image

In order to carry out such a daring mission, many innovative and powerful new technologies were developed specifically to enable Webb to achieve its primary mission.  

Here are 5 technologies that were developed to help Webb push the boundaries of space exploration and discovery:

1. Microshutters

image

Microshutters are basically tiny windows with shutters that each measure 100 by 200 microns, or about the size of a bundle of only a few human hairs. 

The microshutter device will record the spectra of light from distant objects (spectroscopy is simply the science of measuring the intensity of light at different wavelengths. The graphical representations of these measurements are called spectra.)

image

Other spectroscopic instruments have flown in space before but none have had the capability to enable high-resolution observation of up to 100 objects simultaneously, which means much more scientific investigating can get done in less time. 

Read more about how the microshutters work HERE.

2. The Backplane

image

Webb’s backplane is the large structure that holds and supports the big hexagonal mirrors of the telescope, you can think of it as the telescope’s “spine”. The backplane has an important job as it must carry not only the 6.5 m (over 21 foot) diameter primary mirror plus other telescope optics, but also the entire module of scientific instruments. It also needs to be essentially motionless while the mirrors move to see far into deep space. All told, the backplane carries more than 2400kg (2.5 tons) of hardware.

image

This structure is also designed to provide unprecedented thermal stability performance at temperatures colder than -400°F (-240°C). At these temperatures, the backplane was engineered to be steady down to 32 nanometers, which is 1/10,000 the diameter of a human hair!

Read more about the backplane HERE.

3. The Mirrors

image

One of the Webb Space Telescope’s science goals is to look back through time to when galaxies were first forming. Webb will do this by observing galaxies that are very distant, at over 13 billion light years away from us. To see such far-off and faint objects, Webb needs a large mirror. 

Webb’s scientists and engineers determined that a primary mirror 6.5 meters across is what was needed to measure the light from these distant galaxies. Building a mirror this large is challenging, even for use on the ground. Plus, a mirror this large has never been launched into space before! 

image

If the Hubble Space Telescope’s 2.4-meter mirror were scaled to be large enough for Webb, it would be too heavy to launch into orbit. The Webb team had to find new ways to build the mirror so that it would be light enough - only 1/10 of the mass of Hubble’s mirror per unit area - yet very strong. 

Read more about how we designed and created Webb’s unique mirrors HERE.

4. Wavefront Sensing and Control

image

Wavefront sensing and control is a technical term used to describe the subsystem that was required to sense and correct any errors in the telescope’s optics. This is especially necessary because all 18 segments have to work together as a single giant mirror.

The work performed on the telescope optics resulted in a NASA tech spinoff for diagnosing eye conditions and accurate mapping of the eye.  This spinoff supports research in cataracts, keratoconus (an eye condition that causes reduced vision), and eye movement – and improvements in the LASIK procedure.

Read more about the tech spinoff HERE. 

5. Sunshield and Sunshield Coating

image

Webb’s primary science comes from infrared light, which is essentially heat energy. To detect the extremely faint heat signals of astronomical objects that are incredibly far away, the telescope itself has to be very cold and stable. This means we not only have to protect Webb from external sources of light and heat (like the Sun and the Earth), but we also have to make all the telescope elements very cold so they don’t emit their own heat energy that could swamp the sensitive instruments. The temperature also must be kept constant so that materials aren’t shrinking and expanding, which would throw off the precise alignment of the optics.

image

Each of the five layers of the sunshield is incredibly thin. Despite the thin layers, they will keep the cold side of the telescope at around -400°F (-240°C), while the Sun-facing side will be 185°F (85°C). This means you could actually freeze nitrogen on the cold side (not just liquify it), and almost boil water on the hot side. The sunshield gives the telescope the equivalent protection of a sunscreen with SPF 1 million!

Read more about Webb’s incredible sunshield HERE. 

Learn more about the Webb Space Telescope and other complex technologies that have been created for the first time by visiting THIS page.

For the latest updates and news on the Webb Space Telescope, follow the mission on Twitter, Facebook and Instagram.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

Loading...
End of content
No more pages to load
  • thisfutureastronaut
    thisfutureastronaut liked this · 9 years ago
  • nasalangley
    nasalangley reblogged this · 9 years ago
nasalangley - NASA Langley Research Center
NASA Langley Research Center

Hampton, VA

94 posts

Explore Tumblr Blog
Search Through Tumblr Tags