Editor’s Note: This post was updated on March 15, 2024, to reflect new URLs and updated qualifications for applicants.
Have you ever wondered if you have what it takes to become a NASA astronaut? The term “astronaut” derives from the Greek word meaning “star sailor.”
We’re looking for a new class of astronauts to join the NASA team, and if you’re thinking about applying, there are a few things you should know.
MYTH: All astronauts have piloting experience.
FACT: You don’t need to be a pilot to be an astronaut. Flying experience is not a requirement, but it could be beneficial to have.
MYTH: All astronauts have perfect vision.
FACT: It’s OK if you don’t have 20/20 vision. As of September 2007, corrective surgical procedures of the eye (PRK and LASIK), are now allowed, providing at least one year has passed since the date of the procedure with no permanent adverse aftereffects.
MYTH: All astronauts have advanced degrees, like a PhD.
FACT: While a master’s degree from an accredited university is typically necessary to become an astronaut, an exception exists if you have completed a medical degree or test pilot school.
MYTH: Astronauts are required to have military experience to be selected.
FACT: Military experience is not required to become an astronaut.
MYTH: You must be a certain age to be an astronaut.
FACT: There are no age restrictions. Astronaut candidates selected in the past have ranged between the ages of 26 and 46, with the average age being 34.
Basic Qualification Requirements
Applicants must meet the following minimum requirements before submitting an application:
Be a U.S. citizen.
Have completed a master’s degree (or foreign equivalent) in an accredited college or university with major study in an appropriate technical field of engineering, biological science, physical science, computer science, or mathematics.
The master’s degree requirement can also be met by having:
Completed at least two years (36 semester hours or 54 quarter hours) in an accredited PhD or related doctoral degree program (or foreign equivalent) with major study in an appropriate technical field of engineering, biological science, physical science, computer science, or mathematics.
Completed a Doctor of Medicine, Doctor of Osteopathic Medicine, or related medical degree (or foreign equivalent) in an accredited college or university.
Completed or be currently enrolled in a Test Pilot School (TPS) program (nationally or internationally recognized) and will have completed this program by June 2025. (Must submit proof of completion or enrollment.)
If TPS is your only advanced technical degree, you must have also completed a bachelor’s degree or higher (or foreign equivalent) at an accredited college or university with major study in an appropriate technical field of engineering, biological science, physical science, computer science, or mathematics.
Have at least three years of related professional experience obtained after degree completion (or 1,000 Pilot-in-Command hours with at least 850 of those hours in high-performance jet aircraft for pilots). For medical doctors, time in residency can count toward experience and must be completed by June 2025.
Be able to pass the NASA long-duration flight astronaut physical.
Keep reading
We’re taking time to highlight our progress and accomplishments over the past 8 years. Join our historical journey!
President Barack Obama visited our Kennedy Space Center in Florida to deliver remarks on the bold new course the administration is charting for America’s space program. During a speech at the center, President Obama said, “I believe we can send humans to orbit Mars and return them safely to Earth. And a landing on Mars will follow. And I expect to be around to see it.” R
Our Commercial Crew and Cargo Program is investing financial and technical resources to stimulate efforts within the private sector to develop safe, reliable and cost-effective space transportation systems. This program has allowed us to continue to reach low-Earth orbit, even after the retirement of the Space Shuttle Program. In the coming years, we will once again launch U.S. astronauts from American soil to the International Space Station through this commercial partnership.
Our Vehicle Assembly Building (VAB) at Kennedy Space Center served through the Apollo and Space Shuttle Programs, and is now undergoing renovations to accommodate future launch vehicles…like our Space Launch System (SLS) rocket that will carry astronauts to deep space destinations, like Mars. Already, shuttle-era work platforms have been removed from the VAB to make way for our advanced heavy-lift launch vehicle, SLS.
For the first time since our Apollo-era rockets and space shuttles lifted off on missions from Launch Complex 39 at our Kennedy Space Center in Florida, one of the launch pads is undergoing extensive upgrades to support our 21st century space launch complex. At launch pad B, workers are making upgrades to support our Space Launch System (SLS) rocket and a variety of other commercial launch vehicles. .
Our commercial partnerships with companies like SpaceX and Orbital ATK are allowing us to find new ways to resupply the International Space Station. Orbital ATK’s Cygnus cargo spacecraft is shown being captured using the Station’s Canadarm2 robotic arm. Packed with more than 5,100 pounds of cargo and research equipment, the vehicle made Orbital ATK's fifth commercial resupply flight to the station in October 2016.
After a seven-year journey, our New Horizons spacecraft arrived at dwarf planet Pluto. It captured this high-resolution enhanced color view of the planet on July 14, 2015. The image combines blue, red and infrared images taken by the craft’s imaging camera. Pluto’s surface sports a remarkable range of subtle colors, enhanced in this view to a rainbow of pale blues, yellows, oranges, and deep reds. Many land forms have their own distinct colors, which tell a complex geological and climatological story.
Juno’s 2011 launch brought it into orbit around Jupiter. This composite image depicts Jupiter’s cloud formations as seen through the eyes of Juno’s Microwave Radiometer (MWR) instrument as compared to the top layer, a Cassini Imaging Science Subsystem image of the planet. The MWR can see several hundred miles (kilometers) into Jupiter’s atmosphere with its largest antenna. The belts and bands visible on the surface are also visible in modified form in each layer below.
As we strived to make deep-space missions a reality, on Dec. 5, 2014, a Delta IV Heavy rocket lifted off from Cape Canaveral carrying our Orion spacecraft on an unpiloted flight test to Earth orbit. During the two-orbit, four-and-a-half hour mission, engineers evaluated the systems critical to crew safety, the launch abort system, the heat shield and the parachute system.
Meet the Space Launch System, our latest rocket system and see how it stacks up (no pun intended) to earlier generations of launch vehicles. While we engaged commercial partners to help us reach low-Earth orbit, we also were able to focus on deep-space exploration. This resulted in the creation of SLS, the world’s most powerful rocket and the one that will carry humans to deep-space destinations, like Mars.
Our latest generation of small satellite technology represents a new way of advancing scientific research and reducing costs. These small sats are part of a technology demonstration that were deployed from the International Space Station in December 2016.
In 2013, we created a standalone technology development organization at NASA. Why? This new organization was an outgrowth of President Obama’s recognition of the critical role that space technology and innovation will play in enabling both future space missions and bettering life on Earth. The President’s most recent budget request included $4 million per year for our Centennial Challenges prizes. This program seeks innovations from diverse and non-traditional sources and competitors are not supported by government funding. Awards are only made to successful teams when the challenges are met. Throughout this administration (2009 – 2016), more than $6.5 million has been awarded to winners.
Did you know that many technologies originally designed for space exploration are now being used by the general public? Yes, there’s space in your life! We have a long history of transferring technology to the private sector, things we like to call NASA Spinoffs. From enriched baby formula, to digital camera sensors…you may be surprised where this technology came from.
In 2014, the Obama Administration announced that the United States would support the extension of the International Space Station to at least 2024. This gave the station a decade to continue its already fruitful microgravity research mission. This offered scientists and engineers the time they need to ensure the future of exploration, scientific discoveries and economic development.
Former NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko spent a year in space to help us understand the impacts of long-duration spaceflight on the human body. The studies performed throughout their stay will yield beneficial knowledge on the medical, psychological and biomedical challenges faced by astronauts that will one day travel to Mars. Scott Kelly was a particularly interesting candidate for the job, as he has a twin brother. While Scott spent a year on the International Space Station, his brother Mark spent the year on Earth. Comparing test results from both subjects will provide an even deeper understanding of the human body and how it reacts to the space environment.
From one MILLION miles away, our EPIC camera on the Deep Space Climate Observatory (DSCOVR) satellite returned its first view of the entire sunlit side of Earth in 2015. Because of this spacecraft, you can now see a daily series of images of our home planet! These images are available 12 to 36 hours after they are acquired.
The James Webb Space Telescope represents a giant leap forward in our quest to understand the universe and our origins. The successor to the Hubble Space Telescope, JWST is designed to examine every phase of cosmic history: from the first luminous glows after the Big Bang to the formation of galaxies, stars, and planets to the evolution of our own solar system. More:
Our commitment to advancing aeronautics has led to developments in today’s aviation that have made air travel safer than ever. In fact, every U.S. aircraft flying today and every U.S. air traffic control tower uses NASA-developed technology in some way. Streamlined aircraft bodies, quieter jet engines, techniques for preventing icing, drag-reducing winglets, lightweight composite structures, software tools to improve the flow of tens of thousands of aircraft through the sky, and so much more are an everyday part of flying thanks to our research that traces its origins back to the earliest days of aviation. Our green aviation technologies are dramatically reducing the environmental impact of aviation and improving its efficiency while maintaining safety in more crowded skies, and paving the way for revolutionary aircraft shapes and propulsion.
History is about to repeat itself as the Quiet Supersonic Technology, or QueSST, concept begins its design phase to become one of the newest generation of X-planes. Over the past seven decades, our nation’s best minds in aviation designed, built and flew a series of experimental airplanes to test the latest fanciful and practical ideas related to flight. Known as X-planes, we are again are preparing to put in the sky an array of new experimental aircraft, each intended to carry on the legacy of demonstrating advanced technologies that will push back the frontiers of aviation.
Blazing the trail for safely integrating drones into the national airspace, we have been testing and researching uncrewed aircraft. The most recent “out of sight” tests are helping us solve the challenge of drones flying beyond the visual line of sight of their human operators without endangering other aircraft.
Our Solar Dynamics Observatory, which launched in 2010, observes the sun in unparalleled detail and is yet another mission designed to understand the space in which we live. In this image, the sun, our system’s only star seems to be sending us a message. A pair of giant filaments on the face of the sun form what appears to be an enormous arrow pointing to the right. If straightened out, each filament would be about as long as the sun’s diameter—1 million miles long. Such filaments are cooler clouds of solar material suspended above the sun's surface by powerful magnetic forces. Filaments can float for days without much change, though they can also erupt, releasing solar material in a shower that either rains back down or escapes out into space, becoming a moving cloud known as a coronal mass ejection, or CME.
There are selfies and there are selfies—from a world more than 33 million miles away. When the Curiosity Rover launched on Nov. 6, 2011, to begin a 10-month journey to the Red Planet, who knew it would be so photogenic. Not only has Curiosity sent back beauty shots of itself, its imagery has increased our knowledge of Mars manyfold. But it’s not just a camera; onboard are an array of scientific instruments designed to analyze the Red Planet’s soil, rocks and chemical composition.
On Dec. 14, 2015, we announced that astronaut applications were open on USAJOBS. The window for applications closed on Feb. 18 with a record turnout! We received more than 18,300 applications from excited individuals from around the country, all hoping to join the 2017 astronaut class. This surpassed the more than 6,100 received in 2012, and the previous record of 8,000 applicants in 1978.
Asteroids are a part of our solar system and in our quest to learn more about their origins, we sent the OSIRIS-Rex, the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, to rendezvous with comet Bennu and return a sample of the comet to scientists here on Earth. Along the way, the mission will be multitasking during its two-year outbound cruise to search for elusive “Trojan” asteroids. Trojans are asteroids that are constant companions to planets in our solar system as they orbit the sun, remaining near a stable point 60 degrees in front of or behind the planet.
In December 1995, the first exoplanet (a planet outside our solar system) was found. Since then, our Kepler mission has surveyed the Milky Way to verify 2,000+ exoplanets. On July 23, 2015, the Kepler mission confirmed the discovery of the first Earth-sized planet in the habitable zone. Not only that, but the planet orbits a sun very much like our own.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We’re always making amazing discoveries about the farthest reaches of our universe, but there’s also plenty of unexplored territory much closer to home.
Our “Backyard Worlds: Planet 9” is a citizen science project that asks curious people like you — yes, you there! — to help us spot objects in the area around our own solar system like brown dwarfs. You could even help us figure out if our solar system hosts a mysterious Planet 9!
In 2009, we launched the Wide-field Infrared Survey Explorer (WISE). Infrared radiation is a form of light that humans can’t see, but WISE could. It scans the sky for infrared light, looking for galaxies, stars and asteroids. Later on, scientists started using it to search for near-Earth objects (NEOWISE) like comets and asteroids.
These searches have already turned up so much data that researchers have trouble hunting through all of it. They can’t do it on their own. That’s why we asked everyone to chip in. If you join Backyard Worlds: Planet 9, you’ll learn how to look at noisy images of space and spot previously unidentified objects.
You’ll figure out how to tell the difference between real objects, like planets and stars, and artifacts. Artifacts are blurry blobs of light that got scattered around in WISE’s instruments while it was looking at the sky. These “optical ghosts” sometimes look like real objects.
Why can’t we use computers to do this, you ask? Well, computers are good at lots of things, like crunching numbers. But when it comes to recognizing when something’s a ghostly artifact and when it’s a real object, humans beat software all the time. After some practice, you’ll be able to recognize which objects are real and which aren’t just by watching them move!
One of the things our citizen scientists look for are brown dwarfs, which are balls of gas too big to be planets and too small to be stars. These objects are some of our nearest neighbors, and scientists think there’s probably a bunch of them floating around nearby, we just haven’t been able to find all of them yet.
But since Backyard Worlds launched on February 15, 2016, our volunteers have spotted 432 candidate brown dwarfs. We’ve been able to follow up 20 of these with ground-based telescopes so far, and 17 have turned out to be real!
Image Credit: Ryan Trainor, Franklin and Marshall College
How do we know for sure that we’ve spotted actual, bona fide, authentic brown dwarfs? Well, like with any discovery in science, we followed up with more observation. Our team gets time on ground-based observatories like the InfraRed Telescope Facility in Hawaii, the Magellan Telescope in Chile (pictured above) and the Apache Point Observatory in New Mexico and takes a closer look at our candidates. And sure enough, our participants found 17 brown dwarfs!
But we’re not done! There’s still lots of data to go through. In particular, we want your help looking for a potential addition to our solar system’s census: Planet 9. Some scientists think it’s circling somewhere out there past Pluto. No one has seen anything yet, but it could be you! Or drop by and contribute to our other citizen science projects like Disk Detective.
Congratulations to the citizen scientists who spotted these 17 brown dwarfs: Dan Caselden, Rosa Castro, Guillaume Colin, Sam Deen, Bob Fletcher, Sam Goodman, Les Hamlet, Khasan Mokaev, Jörg Schümann and Tamara Stajic.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Our Neil Gehrels Swift Observatory — Swift for short — is celebrating its 20th anniversary! The satellite studies cosmic objects and events using visible, ultraviolet, X-ray, and gamma-ray light. Swift plays a key role in our efforts to observe our ever-changing universe. Here are a few cosmic surprises Swift has caught over the years — plus one scientists hope to see.
Swift was designed to detect and study gamma-ray bursts, the most powerful explosions in the universe. These bursts occur all over the sky without warning, with about one a day detected on average. They also usually last less than a minute – sometimes less than a few seconds – so you need a telescope like Swift that can quickly spot and precisely locate these new events.
In the fall of 2022, for example, Swift helped study a gamma-ray burst nicknamed the BOAT, or brightest of all time. The image above depicts X-rays Swift detected for 12 days after the initial flash. Dust in our galaxy scattered the X-ray light back to us, creating an extraordinary set of expanding rings.
Tidal disruptions happen when an unlucky star strays too close to a black hole. Gravitational forces break the star apart into a stream of gas, as seen above. Some of the gas escapes, but some swings back around the black hole and creates a disk of debris that orbits around it.
These events are rare. They only occur once every 10,000 to 100,000 years in a galaxy the size of our Milky Way. Astronomers can’t predict when or where they’ll pop up, but Swift’s quick reflexes have helped it observe several tidal disruption events in other galaxies over its 20-year career.
Usually, we think of galaxies – and most other things in the universe – as changing so slowly that we can’t see the changes. But about 10% of the universe’s galaxies are active, which means their black hole-powered centers are very bright and have a lot going on. They can produce high-speed particle jets or flares of light. Sometimes scientists can catch and watch these real-time changes.
For example, for several years starting in 2018, Swift and other telescopes observed changes in a galaxy’s X-ray and ultraviolet light that led them to think the galaxy’s magnetic field had flipped 180 degrees.
Magnetars are a type of neutron star, a very dense leftover of a massive star that exploded in a supernova. Magnetars have the strongest magnetic fields we know of — up to 10 trillion times more intense than a refrigerator magnet and a thousand times stronger than a typical neutron star’s.
Occasionally, magnetars experience outbursts related to sudden changes in their magnetic fields that can last for months or even years. Swift detected such an outburst from a magnetar in 2020. The satellite’s X-ray observations helped scientists determine that the city-sized object was rotating once every 10.4 seconds.
Swift has also studied comets in our own solar system. Comets are town-sized snowballs of frozen gases, rock, and dust. When one gets close to our Sun, it heats up and spews dust and gases into a giant glowing halo.
In 2019, Swift watched a comet called 2I/Borisov. Using ultraviolet light, scientists calculated that Borisov lost enough water to fill 92 Olympic-size swimming pools! (Another interesting fact about Borisov: Astronomers think it came from outside our solar system.)
Swift has studied a lot of cool events and objects over its two decades, but there are still a few events scientists are hoping it’ll see.
Swift is an important part of a new era of astrophysics called multimessenger astronomy, which is where scientists use light, particles, and space-time ripples called gravitational waves to study different aspects of cosmic events.
In 2017, Swift and other observatories detected light and gravitational waves from the same event, a gamma-ray burst, for the first time. But what astronomers really want is to detect all three messengers from the same event.
As Swift enters its 20th year, it’ll keep watching the ever-changing sky.
Keep up with Swift through NASA Universe on X, Facebook, and Instagram. And make sure to follow us on Tumblr for your regular dose of space!
It’s time to get space-crafty! (Get it?) We’re getting ready to launch Landsat 9 into space this fall, and we want to know, how does Landsat inspire you?
For nearly 50 years, Landsat satellites have been collecting important data and taking beautiful images of Earth, as a partnership between NASA and the U.S. Geological Survey. Scientists and policy makers alike use this data to understand climate change, deforestation, the growth of cities, and so much more.
In celebration of the Landsat 9 launch in September, we are calling all crafters to create space-crafts inspired by your favorite Landsat image! From watercolor paintings to needlework to frosted cakes, let your creativity flow and show us how you see Landsat images.
For a little inspiration, here are some #LandsatCraft examples from some of the people who work with Landsat:
“Looking through the Visible Earth Landsat gallery for inspiration, I saw the Landsat Image Mosaic of Antarctica (LIMA) and knew immediately what I had to do -- recreate it in a mosaic of my own. LIMA is a composite of more than 1,000 cloud-free Landsat 7 images of Antarctica, and when it was released in 2007 it was our first high resolution, true-color look at the icy continent.” – Kate Ramsayer, NASA Landsat Communications Coordinator
“I love embroidering satellite imagery and NASA data. For Landsat, I wanted something with lots of straight lines -- much easier to stitch! -- and crop fields like these fit the bill. It’s amazing how clearly we can see the influence of human activities in satellite imagery like this. It’s a constant reminder of the effect we have on our home planet.” – Katy Mersmann, Earth Science Social Media Lead
“We didn’t have the discipline or the organizational skills to do any of the really, really fancy images, like Lena Delta, so we chose Garden City, Kansas in 1972. We added a model of Landsat 1, too.” – Ryan Fitzgibbons, Earth Science Producer, and Charles Fitzgibbons, Age 8
"I was inspired by this Landsat image which demonstrates how we can use satellite imagery to remotely monitor cover crop performance, a sustainable farming practice that promotes soil health. Since I began working with NASA Harvest, NASA's Food Security and Agriculture Program, I've come to understand the critical importance of conservation agriculture and resilient farmlands in support of a food secure future for all, especially in the face of a changing climate." – Mary Mitkish, NASA Harvest Communications Lead
“I chose particular ingredients that represent the Landsat qualities that we celebrate:
The base spirit is gin because Landsat data is clean and precise. Vermouth represents our foreign collaborators. Using both lemon and lime juices signifies the diverse uses of the data. The ginger is for the land we study. The apple, well, because it’s American. The club soda makes it a long drink, for the long data record.” – Matthew Radcliff, NASA Landsat Producer
“Last year for the 50th Earth Day, I created this poster, inspired by our views of river deltas -- many captured by Landsat satellites -- which are particularly beautiful and evocative of water coursing through our land like a circulation system of nature. In 2000, Landsat 7 took one of my favorite images of the Lena Delta, which is the basis for this art.” – Jenny Mottar, Art Director for NASA Science
Are you feeling inspired to create yet? We’re so excited to see your #LandsatCraft projects! Follow NASA Earth on Twitter, Facebook, and Instagram to see if your art is shared!
Make sure to follow us on Tumblr for your regular dose of space!
Earlier this month, Mars was at opposition, which is the point in their orbits when Mars, Earth and the sun all line up, making for good conditions to view the Red Planet from Earth.
Now, it’s Saturn’s turn. The ringed planet will be at opposition on June 3, and this week is a great time to see it — both in the sky as well as up close, thanks to our spacecraft. Here are a few things to know about Saturn exploration this week:
1. Group Portrait
Thanks to their current orbital positions, our sun-observing spacecraft STEREO-A was recently able to capture the sun, Saturn, Mars and Earth in one image. Take a closer look HERE. Discover more about the STEREO mission HERE.
2. Likable, Lick-able Saturn
Saturn’s handsome visage is featured among the new stamps that the US Postal Service is releasing this week to highlight our adventures in planetary exploration.
3. Do You Even Know Saturn?
Yes, yes, it’s the one with the rings. But did you know Saturn has winds that can exceed 1000 miles per hour? Or that its magnetic field is hundreds of times as powerful as the Earth’s? Or that its day is just 10 hours long? How well do you really know the sixth planet?
4. Picking Up Signals
One thing you many not know about the planet is that it’s loud, at least if you listen to its radio signals. When our robotic Cassini spacecraft first approached Saturn, it detected the powerful fields that surround it. Engineers turned those signals into beautiful, eerie sounds. Listen to them HERE.
5. Not All Who Wander Are Lost
The Cassini mission’s explorations of the Saturn system are very much ongoing. In the next few days, the spacecraft will be touring many locations, including the giant moon Titan, Saturn’s turbulent clouds, the tiny moon Albiorix and more! Get the full itinerary HERE.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Craving some summer Sun? We're inviting people around the world to submit their names to be placed on a microchip that will travel to the Sun aboard Parker Solar Probe!
Launching summer 2018, Parker Solar Probe will be our first mission to "touch" a star. The spacecraft - about the size of a small car - will travel right through the Sun's atmosphere, facing brutal temperatures and radiation as it traces how energy and heat move through the solar corona and explores what accelerates the solar wind and solar energetic particles.
Send your name along for the ride at go.nasa.gov/HotTicket! Submissions will be accepted through April 27, 2018.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
1. We will add to our existing robotic fleet at the Red Planet with the InSight Mars lander set to study the planet's interior.
This terrestrial planet explorer will address one of the most fundamental issues of planetary and solar system science - understanding the processes that shaped the rocky planets of the inner solar system (including Earth) more than four billion years ago.
2. The Mars 2020 rover will look for signs of past microbial life, gather samples for potential future return to Earth.
The Mars 2020 mission takes the next step by not only seeking signs of habitable conditions on the Red Planet in the ancient past, but also searching for signs of past microbial life itself. The Mars 2020 rover introduces a drill that can collect core samples of the most promising rocks and soils and set them aside in a "cache" on the surface of Mars.
3. The James Webb Space Telescope will be the premier observatory of the next decade, studying the history of our Universe in infrared.
Webb will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own solar system.
4. The Parker Solar Probe will "touch the Sun," traveling closer to the surface than any spacecraft before.
This spacecraft, about the size of a small car, will travel directly into the sun's atmosphere about 4 million miles from our star's surface. Parker Solar Probe and its four suites of instruments – studying magnetic and electric fields, energetic particles, and the solar wind – will be protected from the Sun’s enormous heat by a 4.5-inch-thick carbon-composite heat shield.
5. Our OSIRIS-REx spacecraft arrives at the near-Earth asteroid Bennu in August 2018, and will return a sample for study in 2023.
This mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth.
6. Launching in 2018, the Transiting Exoplanet Survey Satellite (TESS) will search for planets around 200,000 bright, nearby stars.
The Transiting Exoplanet Survey Satellite (TESS) is the next step in the search for planets outside of our solar system (exoplanets), including those that could support life. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits.
7. A mission to Jupiter's ocean-bearing moon Europa is being planned for launch in the 2020s.
The mission will place a spacecraft in orbit around Jupiter in order to perform a detailed investigation of Europa -- a world that shows strong evidence for an ocean of liquid water beneath its icy crust and which could host conditions favorable for life.
8. We will launch our first integrated test flight of the Space Launch System rocket and Orion spacecraft, known as Exploration Mission-1.
The Space Launch System rocket will launch with Orion atop it. During Exploration Mission-1, Orion will venture thousands of miles beyond the moon during an approximately three week mission.
9. We are looking at what a flexible deep space gateway near the Moon could be.
We’ve issued a draft announcement seeking U.S. industry-led studies for an advanced solar electric propulsion (SEP) vehicle capability. The studies will help define required capabilities and reduce risk for the 50 kilowatt-class SEP needed for the agency’s near-term exploration goals.
10. Want to know more? Read the full story.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
It’s 1969 and Apollo 11 astronauts Buzz Aldrin and Neil Armstrong are the first humans to land on the Moon. In now iconic footage, Aldrin and Armstrong carefully assemble and maneuver an American flag to place on the lunar surface. The fabric unfurls, staying suspended without any wind to animate the stars and stripes. The flagpole sways precariously as the crew work to anchor it in the Moon’s low gravity at just 1/6th that of Earth’s. How did this moment come about? On Flag Day, let’s dive behind-the-scenes of what led to getting the American flag on the Moon 50 years ago.
Image: Astronaut Buzz Aldrin poses for a photograph beside the deployed United States flag during the Apollo 11 mission.
Seeking to empower the nation, President John F. Kennedy gave us a grand charge. The human spaceflight program of the early 1960s was challenged to work on missions that sent humans to the surface of another world. Following President Kennedy’s death in 1963, President Richard Nixon stressed a more international perspective to the Apollo missions. To reconcile the need for global diplomacy with national interests, we appointed the Committee on Symbolic Activities for the First Lunar Landing.
Image: NASA Administrator Thomas Paine and President Richard Nixon are seen aboard the USS Hornet, Apollo 11’s splashdown recovery vessel.
The committee, and the U.S. at large, wanted to avoid violating the United Nations Outer Space Treaty, which prohibited any nation from taking possession of a celestial body. After some debate, they recommended that the flag only appear during the Apollo 11 spacewalk. A plaque would accompany it, explaining that the flag was meant to stand for peaceful exploration, not conquest.
Image: The plaque reads “Here men from the planet Earth first set foot upon the Moon July 1969 A.D. We came in peace for all of mankind.” Under the text are signatures by President Nixon, Buzz Aldrin, Neil Armstrong, and Michael Collins.
A team of engineers at Johnson Space Center had three months to resolve several issues regarding the flag’s assembly. First, was the Moon’s lack of atmosphere. The flag, quite literally, could not fly the way it does on Earth. To address this, a horizontal crossbar was added to support the flag’s weight and give the illusion of it waving.
Image: NASA technician David L. McCraw shows the flag next to a Lunar Module mockup.
Second was the flag’s assembly, which had to be as lightweight and compact as possible so as not to take up limited storage space. The completed package, which was attached to Lunar Module’s ladder, weighed just under ten pounds. It received an outer case made of steel, aluminum, and Thermoflex insulation and blanketing to shield the flag from the 2,000 degree Fahrenheit spike from the Eagle’s descent engine.
Image: Component pieces of the flag assembly.
The last issue was mobility. Bulky spacesuits significantly restricted the astronauts’ range of motion, and suit pressurization limited how much force they could apply. To accommodate these limits, the team included telescoping components to minimize the need to reach and maneuver the poles. A red painted ring on the flagpole indicated how far into the ground it should be driven. Hinges and catches would lock into place once the pieces were fully extended.
Image: Diagram from the 1969 Apollo 11 press release illustrating astronaut spacesuit reach capabilities and ideal working height.
Fifty years after Apollo 11, the flag we planted on the lunar surface has likely faded but its presence looms large in United States history as a symbol of American progress and innovation.
Image: A close-up view of the U.S. flag deployed on the Moon at the Taurus-by the crew of Apollo 17, the most recent lunar landing mission.
The story doesn’t stop here. Anne Platoff's article “Where No Flag Has Gone Before” sheds more light on the context and technical process of putting the United States flag on the Moon. You can also check out Johnson Space Center’s recent feature story that details its presence in later missions. Happy Flag Day! Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Our Commercial Crew Program has worked with several American aerospace industry companies to facilitate the development of U.S. human spaceflight systems since 2010. The goal is to have safe, reliable and cost-effective access to and from the International Space Station and foster commercial access to other potential low-Earth orbit destinations.
We selected Boeing and SpaceX in September 2014 to transport crew to the International Space Station from the United States. These integrated spacecraft, rockets and associated systems will carry up to four astronauts on NASA missions, maintaining a space station crew of seven to maximize time dedicated to scientific research on the orbiting laboratory
We begin a new era of human spaceflight as American astronauts will once again launch on an American spacecraft and rocket from American soil to the International Space Station.
As part of our Commercial Crew Program, NASA astronauts Robert Behnken and Douglas Hurley will fly on SpaceX’s Crew Dragon spacecraft for an extended stay at the space station for the Demo-2 mission. Launch is scheduled for 4:33 p.m. EDT on Wednesday, May 27.
Demo-2 will be SpaceX’s final test flight to validate its crew transportation system, including the Crew Dragon spacecraft, Falcon 9 rocket, launch pad and operations capabilities. While docked to the space station, the crew will run tests to ensure the Crew Dragon is capable of remaining connected to the station for up to 210 days on future missions.
Our Commercial Crew Program is working with the American aerospace industry as companies develop and operate a new generation of spacecraft and launch systems capable of carrying crews to low-Earth orbit and the International Space Station. Commercial transportation to and from the station will provide expanded utility, additional research time and broader opportunities for discovery on the orbiting laboratory.
The station is a critical testbed for us to understand and overcome the challenges of long-duration spaceflight. As commercial companies focus on providing human transportation services to and from low-Earth orbit, we are freed up to focus on building spacecraft and rockets for deep space missions.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The Aral Sea was once the fourth-largest lake in the world. Fed primarily by snowmelt and precipitation flowing down from faraway mountains, it was a temperate oasis in an arid region. But in the 1960s, the Soviet Union diverted two major rivers to irrigate farmland, cutting off the inland sea from its source. As the Aral Sea dried up, fisheries collapsed, as did the communities that depended on them. The remaining water supply became increasingly salty and polluted with runoff from agricultural plots. Loss of the Aral Sea's water influenced regional climate, making the winters even colder and the summers much hotter.
While seasonal rains still bring water to the Aral Sea, the lake is roughly one-tenth of its original size. These satellite images show how the Aral Sea and its surrounding landscape has changed over the past few decades.
For more details about these images, read the full stories here: https://go.nasa.gov/2PqJ1ot
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts