What Makes The Artemis Moon Mission NASA's Next Leap Forward?

What Makes the Artemis Moon Mission NASA's Next Leap Forward?

From left to right: A grey hollow pyramid-shaped lightning tower, the white Orion spacecraft and the top of the Space Launch System (SLS) rocket in orange, the Moon in faint white and gray, the Mobile Launcher with many pipes and levels in gray and red. The background is blue skies. Credit: NASA/Ben Smegelsky

When NASA astronauts return to the Moon through Artemis, they will benefit from decades of innovation, research, and technological advancements. We’ll establish long-term lunar science and exploration capabilities at the Moon and inspire a new generation of explorers—the Artemis Generation.

Cloudy skies are the backdrop behind the SLS rocket and Orion spacecraft, which is reflected in the windows of a vehicle to the left of the photo. The SLS is orange with two white boosters on either side, and the spacecraft is white, next to a gray pyramid-shaped lightning tower and Mobile Launcher with many pipes and levels in gray and red. Credit: NASA/Aubrey Gemignani

Meet the Space Launch System rocket, or SLS. This next-generation super heavy-lift rocket was designed to send astronauts and their cargo farther into deep space than any rocket we’ve ever built. During liftoff, SLS will produce 8.8 million pounds (4 million kg) of maximum thrust, 15 percent more than the Saturn V rocket.

The SLS rocket and Orion spacecraft sit inside the Vehicle Assembly Building (VAB) at Kennedy Space Center. The rocket is orange, with two white boosters on either side. The Orion Spacecraft is at the top and white. The VAB has many levels with walkways, pipes, and structures around the rocket. Credit: NASA/Kim Shiflett

SLS will launch the Orion spacecraft into deep space. Orion is the only spacecraft capable of human deep space flight and high-speed return to Earth from the vicinity of the Moon. More than just a crew module, Orion has a launch abort system to keep astronauts safe if an emergency happens during launch, and a European-built service module, which is the powerhouse that fuels and propels Orion and keeps astronauts alive with water, oxygen, power, and temperature control.

The Space Launch System rocket stands upright on the launchpad. The background is the sky dominated by clouds. The rocket has an orange central fuel tank with two white rocket boosters on either side. The Crawler-Transporter 2 is in the foreground with its massive tread-like wheels. Credit: NASA/Kim Shiflett

Orion and SLS will launch from NASA’s Kennedy Space Center in Florida with help from Exploration Ground Systems (EGS) teams. EGS operates the systems and facilities necessary to process and launch rockets and spacecraft during assembly, transport, launch, and recovery.

An artist's depiction of Gateway, the Moon-orbiting space station. Gateway is seen in gray with red solar arrays; behind it, the Moon is gray, black, and white, as well as the blackness of space. Credit: NASA/Alberto Bertolin

The knowledge we've gained while operating the International Space Station has opened new opportunities for long-term exploration of the Moon's surface. Gateway, a vital component of our Artemis plans, is a Moon-orbiting space station that will serve as a staging post for human expeditions to the lunar surface. Crewed and uncrewed landers that dock to Gateway will be able to transport crew, cargo, and scientific equipment to the surface.

An artist's depiction of astronauts working on the Moon. The astronaut suits are white with silver helmets; they work on the gray lunar surface. Credit: NASA

Our astronauts will need a place to live and work on the lunar surface. Artemis Base Camp, our first-ever lunar science base, will include a habitat that can house multiple astronauts and a camper van-style vehicle to support long-distance missions across the Moon’s surface. Apollo astronauts could only stay on the lunar surface for a short while. But as the Artemis base camp evolves, the goal is to allow crew to stay at the lunar surface for up to two months at a time.

Astronaut Mark Vande Hei takes a selfie in front of Earth during the first spacewalk of 2018. His suit is white, the reflective helmet silver, and Earth is blue with white clouds. Credit: NASA

The Apollo Program gave humanity its first experience traveling to a foreign world. Now, America and the world are ready for the next era of space exploration. NASA plans to send the first woman and first person of color to the lunar surface and inspire the next generation of explorers.

An artist's depiction of Orion traversing above the surface of the Moon, with Earth in the background. Orion is white and gray, the Moon's shadowy surface is white and black, and the Earth is surrounded by the blackness of space and is faintly blue and black. Credit: NASA/Liam Yanulis

Our next adventure starts when SLS and Orion roar off the launch pad with Artemis I. Together with commercial and international partners, NASA will establish a long-term presence on the Moon to prepare for missions to Mars. Everything we’ve learned, and everything we will discover, will prepare us to take the next giant leap: sending the first astronauts to Mars.

Make sure to follow us on Tumblr for your regular dose of space!

More Posts from Nasa and Others

9 years ago

10 Intriguing Worlds Beyond Our Solar System

In celebration of the 20th anniversary of the first confirmed planet around a sun-like star, a collection of some interesting exoplanets has been put together. Some of these are rocky, some are gaseous and some are very, very cold. But there’s one thing each these strange new worlds have in common: All have advanced scientific understanding of our place in the cosmos. Check out these 10 exoplanets, along with artist’s concepts depicting what they might look like. For an extended list of 20 exoplanets, go HERE. 

1. Kepler-186f

image

Kepler-186f was the first rocky planet to be found within the habitable zone -- the region around the host star where the temperature is right for liquid water. This planet is also very close in size to Earth. Even though we may not find out what’s going on at the surface of this planet anytime soon, it’s a strong reminder of why new technologies are being developed that will enable scientists to get a closer look at distance worlds. 

More Info

2. HD 209458 b (nickname “Osiris”)

image

The first planet to be seen in transit (crossing its star) and the first planet to have it light directly detected. The HD 209458 b transit discovery showed that transit observations were feasible and opened up an entire new realm of exoplanet characterization.

More info

3. Kepler-11 system

image

This was the first compact solar system discovered by Kepler, and it revealed that a system can be tightly packed, with at least five planets within the orbit of Mercury, and still be stable. It touched off a whole new look into planet formation ideas and suggested that multiple small planet systems, like ours, may be common.

More info

4. Kepler-16b

image

A real-life "Tatooine," this planet was Kepler's first discovery of a planet that orbits two stars -- what is known as a circumbinary planet.

More info

5. 51 Pegasi b

image

This giant planet, which is about half the mass of Jupiter and orbits its star every four days, was the first confirmed exoplanet around a sun-like star, a discovery that launched a whole new field of exploration.

More info

6. CoRoT 7b

image

The first super-Earth identified as a rocky exoplanet, this planet proved that worlds like the Earth were indeed possible and that the search for potentially habitable worlds (rocky planets in the habitable zone) might be fruitful.

More info

7. Kepler-22b

image

A planet in the habitable zone and a possible water-world planet unlike any seen in our solar system.

More info

8. Kepler-10b

image

Kepler's first rocky planet discovery is a scorched, Earth-size world that scientists believe may have a lava ocean on its surface.

More info

9. Kepler-444 system

image

The oldest known planetary system has five terrestrial-sized planets, all in orbital resonance. This weird group showed that solar systems have formed and lived in our galaxy for nearly its entire existence.

More info

10. 55 Cancri e

image

Sauna anyone? 55 Cancri e is a toasty world that rushes around its star every 18 hours. It orbits so closely -- about 25 times closer than Mercury is to our sun -- that it is tidally locked with one face forever blistering under the heat of its sun. The planet is proposed to have a rocky core surrounded by a layer of water in a “supercritical” state, where it is both liquid and gas, and then the whole planet is thought to be topped by a blanket of steam. 

More info


Tags
8 years ago

Space Missions Come Together in Colorado

Our leadership hit the road to visit our commercial partners Lockheed Martin, Sierra Nevada Corp. and Ball Aerospace in Colorado. They were able to check the status of flight hardware, mission operations and even test virtual reality simulations that help these companies build spacecraft parts.

Let’s take a look at all the cool technology they got to see…

Lockheed Martin

Lockheed Martin is the prime contractor building our Orion crew vehicle, the only spacecraft designed to take humans into deep space farther than they’ve ever gone before.

image

Acting NASA Deputy Administrator Lesa Roe and Acting NASA Administrator Robert Lightfoot are seen inside the CHIL…the Collaborative Human Immersive Laboratory at Lockheed Martin Space Systems in Littleton, Colo. Lockheed Martin’s CHIL enables collaboration between spacecraft design and manufacturing teams before physically producing hardware.

image

Cool shades! The ability to visualize engineering designs in virtual reality offers tremendous savings in time and money compared to using physical prototypes. Technicians can practice how to assemble and install components, the shop floor can validate tooling and work platform designs, and engineers can visualize performance characteristics like thermal, stress and aerodynamics, just like they are looking at the real thing.

image

This heat shield, which was used as a test article for the Mars Curiosity Rover, will now be used as the flight heat shield for the Mars 2020 rover mission.

Fun fact: Lockheed Martin has built every Mars heat shield and aeroshell for us since the Viking missions in 1976.

image

Here you can see Lockheed Martin’s Mission Support Area. Engineers in this room support six of our robotic planetary spacecraft: Mars Odyssey, Mars Reconnaissance Orbiter, MAVEN, Juno, OSIRIS-REx and Spitzer, which recently revealed the first known system of seven Earth-size planets around a single star, TRAPPIST-1. They work with NASA centers and the mission science teams to develop and send commands and monitor the health of the spacecraft.

See all the pictures from the Lockheed Martin visit HERE. 

Sierra Nevada Corporation

Next, Lightfoot and Roe went to Sierra Nevada Corporation in Louisville, Colo. to get an update about its Dream Chaser vehicle. This spacecraft will take cargo to and from the International Space Station as part of our commercial cargo program.

image

Here, Sierra Nevada Corporation’s Vice President of Space Exploration Systems Steve Lindsey (who is also a former test pilot and astronaut!) speaks with Lightfoot and Roe about the Dream Chaser Space System simulator.

image

Lightfoot climbed inside the Dream Chaser simulator where he “flew” the crew version of the spacecraft to a safe landing. This mock-up facility enables approach-and-landing simulations as well as other real-life situations. 

image

See all the images from the Sierra Nevada visit HERE.

Ball Aerospace

Lightfoot and Roe went over to Ball Aerospace to tour its facility. Ball is another one of our commercial aerospace partners and helps builds instruments that are on NASA spacecraft throughout the universe, including the Hubble Space Telescope and the New Horizons mission to Pluto. Ball designed and built the advanced optical technology and lightweight mirror system that will enable the James Webb Space Telescope to look 13.5 billion years back in time. 

image

Looking into the clean room at Ball Aerospace’s facility in Boulder, Colo., the team can see the Ozone Mapping Profiler Suite. These sensors are used on spacecraft to track ozone measurements.

image

Here, the group stands in front of a thermal vacuum chamber used to test satellite optics. The Operation Land Imager-2 is being built for Landsat 9, a collaboration between NASA and the U.S. Geological Survey that will continue the Landsat Program’s 40-year data record monitoring the Earth’s landscapes from space.

See all the pictures from the Ball Aerospace visit HERE. 

We recently marked a decade since a new era began in commercial spaceflight development for low-Earth orbit transportation. We inked agreements in 2006 to develop rockets and spacecraft capable of carrying cargo such as experiments and supplies to and from the International Space Station. Learn more about commercial space HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago
It's A Long Ways Down. This Is A View From The Vantage Point Of Astronaut Shane Kimbrough During His

It's a long ways down. This is a view from the vantage point of astronaut Shane Kimbrough during his spacewalk last Friday outside the International Space Station. Shane posted this photo and wrote, " View of our spectacular planet (and my boots) during the #spacewalk yesterday with @Thom_astro." During the spacewalk with Kimbrough and Thomas Pesquet of ESA, which lasted just over six-and-a-half hours, the two astronauts successfully disconnected cables and electrical connections to prepare for its robotic move Sunday, March 26.

Two astronauts will venture outside the space station again this Thursday, March 30 for the second of three spacewalks. Kimbrough and Flight Engineer Peggy Whitson will begin spacewalk preparation live on NASA Television starting at 6:30 a.m. EST, with activities beginning around 8 a.m. Watch live online here.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
3 years ago

Congratulations to the Winner of the Name the Artemis Moonikin Challenge!

Congratulations To The Winner Of The Name The Artemis Moonikin Challenge!

Congratulations to Campos! After a very close competition among eight different names, the people have decided: Commander Moonikin Campos is launching on Artemis I, our first uncrewed flight test of the Space Launch System rocket and Orion spacecraft around the Moon later this year.

Congratulations To The Winner Of The Name The Artemis Moonikin Challenge!

The name Campos is a dedication to Arturo Campos, electrical power subsystem manager for the Apollo 13 lunar module. He is remembered as not only a key player instrumental to the Apollo 13 crew’s safe return home, but as a champion for equality in the workplace. The final bracket challenge was between Campos and Delos, a reference to the island where Apollo and Artemis were born, according to Greek mythology.

Congratulations To The Winner Of The Name The Artemis Moonikin Challenge!

The Moonikin is a male-bodied manikin previously used in Orion vibration tests. Campos will occupy the commander’s seat inside and wear a first-generation Orion Crew Survival System — a spacesuit Artemis astronauts will wear during launch, entry, and other dynamic phases of their missions. Campos' seat will be outfitted with sensors under the headrest and behind the seat to record acceleration and vibration data throughout the mission. Data from the Moonikin’s experience will inform us how to protect astronauts during Artemis II, the first mission around the Moon with crew in more than 50 years.

Congratulations To The Winner Of The Name The Artemis Moonikin Challenge!

The Moonikin is one of three passengers flying in place of crew aboard Orion on the mission to test the systems that will take astronauts to the Moon for the next generation of exploration. Two female-bodied model human torsos, called phantoms, will also be aboard Orion. Zohar and Helga, the phantoms named by the Israel Space Agency and the German Aerospace Center respectively, will support an investigation called the Matroshka AstroRad Radiation Experiment to provide data on radiation levels during lunar missions.

Congratulations To The Winner Of The Name The Artemis Moonikin Challenge!

Campos, Zohar, and Helga are really excited to begin the journey around the Moon and back. The Artemis I mission will be one of the first steps to establishing a long-term presence on and around the Moon under Artemis, and will help us prepare for humanity's next giant leap — sending the first astronauts to Mars.

Be sure to follow Campos, Zohar, and Helga on their journey by following @NASAArtemis on Facebook, Twitter, and Instagram. Make sure to follow us on Tumblr for your regular dose of space!


Tags
9 years ago

Solar System: 5 Things To Know This Week

Our solar system is huge, so let us break it down for you. Here are 5 things you should know this week: 

1. From Pluto, with Love

Solar System: 5 Things To Know This Week

Last Valentine’s Day, no one had even seen Pluto’s most famous feature, the heart-shaped Sputnik Planum. These days, the New Horizons spacecraft is sending more and more pictures back to Earth from its Pluto flyby last July. We received new ones almost on a weekly basis. For the latest love from the outer solar system, go HERE.

2. Saturn’s Rings: More (and Less) than Meets the Eye

Solar System: 5 Things To Know This Week

The Cassini spacecraft is executing a series of maneuvers to raise its orbit above the plane of Saturn’s famous rings. This will offer some breathtaking views that you won’t want to miss. Meanwhile, Cassini scientists are learning surprising things, such as the fact that the most opaque sections of the rings are not necessarily the thickest.

3. Stay on Target

Solar System: 5 Things To Know This Week

The Juno spacecraft recently completed a course correction maneuver to fine-tune its approach to Jupiter. After years of flight and millions of miles crossed, arrival time is now set to the minute: July 4th at 11:18 p.m. EST. See why we’re going to jupiter HERE.

4. The Many Lives of “Planet X”

Solar System: 5 Things To Know This Week

The announcement of a potential new planet beyond Neptune creates an opportunity to look back at the ongoing search for new worlds in the unmapped reaches of our own solar system. Review what we’ve found so far, and what else might be out there HERE.

5. Answering the Call of Europa

Solar System: 5 Things To Know This Week

There are a few places more intriguing that Jupiter’s icy moon, Europa, home to an underground ocean with all the ingredients necessary for potential life. We’re undertaking a new mission to investigate, and the project’s top manager and scientist will be giving a live lecture to detail their plans. Join Barry Goldstein and Bob Pappalardo on Feb. 11 at 10 p.m. EST for a live lecture series on Ustream.

Want to learn more? Read our full list of the 10 things to know this week HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Is Earth your favorite planet? Why or why not?


Tags
5 years ago

A Day in Our Lives With X-Ray Tech

On July 23, 1999, NASA’s Chandra X-ray Observatory, the most powerful X-ray telescope ever built, was launched into space. Since then, Chandra has made numerous amazing discoveries, giving us a view of the universe that is largely hidden from view through telescopes that observe in other types of light.

image

The technology behind X-ray astronomy has evolved at a rapid pace, producing and contributing to many spinoff applications you encounter in day-to-day life. It has helped make advancements in such wide-ranging fields as security monitoring, medicine and bio-medical research, materials processing, semi-conductor and microchip manufacturing and environmental monitoring.

A Day In Our Lives With X-Ray Tech

7:00 am: Your hand has been bothering you ever since you caught that ball at the family reunion last weekend. Your doctor decides it would be a good idea for an X-ray to rule out any broken bones. X-rays are sent through your hand and their shadow is captured on a detector behind it. You’re relieved to hear nothing is broken, though your doctor follows up with an MRI to make sure the tendons and ligaments are OK.

Two major developments influenced by X-ray astronomy include the use of sensitive detectors to provide low dose but high-resolution images, and the linkage with digitizing and image processing systems. Because many diagnostic procedures, such as mammographies and osteoporosis scans, require multiple exposures, it is important that each dosage be as low as possible. Accurate diagnoses also depend on the ability to view the patient from many different angles. Image processing systems linked to detectors capable of recording single X-ray photons, like those developed for X-ray astronomy purposes, provide doctors with the required data manipulation and enhancement capabilities. Smaller hand-held imaging systems can be used in clinics and under field conditions to diagnose sports injuries, to conduct outpatient surgery and in the care of premature and newborn babies.

image

8:00 am: A technician places your hand in a large cylindrical machine that whirs and groans as the MRI is taken. Unlike X-rays that can look at bones and dense structures, MRIs use magnets and short bursts of radio waves to see everything from organs to muscles.

MRI systems are incredibly important for diagnosing a whole host of potential medical problems and conditions. X-ray technology has helped MRIs. For example, one of the instruments developed for use on Chandra was an X-ray spectrometer that would precisely measure the energy signatures over a key range of X-rays. In order to make these observations, this X-ray spectrometer had to be cooled to extremely low temperatures. Researchers at our Goddard Space Flight Center in Greenbelt, Maryland developed an innovative magnet that could achieve these very cold temperatures using a fraction of the helium that other similar magnets needed, thus extending the lifetime of the instrument’s use in space. These advancements have helped make MRIs safer and require less maintenance.

image

11:00 am:  There’s a pharmacy nearby so you head over to pick up allergy medicine on the way home from your doctor’s appointment.

X-ray diffraction is the technique where X-ray light changes its direction by amounts that depend on the X-ray energy, much like a prism separates light into its component colors. Scientists using Chandra take advantage of diffraction to reveal important information about distant cosmic sources using the observatory’s two gratings instruments, the High Energy Transmission Grating Spectrometer (HETGS) and the Low Energy Transmission Grating Spectrometer (LETGS).

X-ray diffraction is also used in biomedical and pharmaceutical fields to investigate complex molecular structures, including basic research with viruses, proteins, vaccines and drugs, as well as for cancer, AIDS and immunology studies. How does this work? In most applications, the subject molecule is crystallized and then irradiated. The resulting diffraction pattern establishes the composition of the material. X-rays are perfect for this work because of their ability to resolve small objects. Advances in detector sensitivity and focused beam optics have allowed for the development of systems where exposure times have been shortened from hours to seconds. Shorter exposures coupled with lower-intensity radiation have allowed researchers to prepare smaller crystals, avoid damage to samples and speed up their data runs.

image

12:00 pm: Don’t forget lunch. There’s not much time after your errands so you grab a bag of pretzels. Food safety procedures for packaged goods include the use of X-ray scans to make sure there is quality control while on the production line.

Advanced X-ray detectors with image displays inspect the quality of goods being produced or packaged on a production line. With these systems, the goods do not have to be brought to a special screening area and the production line does not have to be disrupted. The systems range from portable, hand-held models to large automated systems. They are used on such products as aircraft and rocket parts and structures, canned and packaged foods, electronics, semiconductors and microchips, thermal insulations and automobile tires.

image

2:00 pm: At work, you are busy multi-tasking across a number of projects, running webinar and presentation software, as well as applications for your calendar, spreadsheets, word processing, image editing and email (and perhaps some social media on the side). It’s helpful that your computer can so easily handle running many applications at once.

X-ray beam lithography can produce extremely fine lines and has applications for developing computer chips and other semiconductor related devices. Several companies are researching the use of focused X-ray synchrotron beams as the energy source for this process, since these powerful beams produce good pattern definition with relatively short exposure times. The grazing incidence optics — that is, the need to skip X-rays off a smooth mirror surface like a stone across a pond and then focus them elsewhere — developed for Chandra were the highest precision X-ray optics in the world and directly influenced this work.

image

7:00 pm: Dream vacation with your family. Finally!  You are on your way to the Bahamas to swim with the dolphins. In the line for airport security, carry-on bags in hand, you are hoping you’ve remembered sunscreen. Shoes off! All items placed in the tray. Thanks to X-ray technology, your bags will be inspected quickly and you WILL catch your plane…

The first X-ray baggage inspection system for airports used detectors nearly identical to those flown in the Apollo program to measure fluorescent X-rays from the Moon. Its design took advantage of the sensitivity of the detectors that enabled the size, power requirements and radiation exposure of the system to be reduced to limits practical for public use, while still providing adequate resolution to effectively screen baggage.  The company that developed the technology later developed a system that can simultaneously image, on two separate screens, materials of high atomic weight (e.g. metal hand guns) and materials of low atomic weight (e.g. plastic explosives) that pass through other systems undetected. Variations of these machines are used to screen visitors to public buildings around the world.

Check out Chandra’s 20th anniversary page to see how they are celebrating.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
4 years ago

Earth Facts that Live Rent-Free in Our Heads

Earth is a big weird planet. With so much going on, it’s easy to forget some of the many, many processes happening here. But at the same time, some stuff is so unexpected and just plain strange that it’s impossible to forget. We asked around and found out lots of people here at NASA have this problem.

image

Here are some facts about Earth that live rent free in our heads:

Earth has a solid inner core that is almost as hot as the surface of the Sun. Earth’s core gets as high as 9,800 degrees Fahrenheit, while the surface of the Sun is about 10,000 degrees Fahrenheit.

image

Dust from the Sahara fertilizes the Amazon rainforest. 27.7 million tons blow all the way across the Atlantic Ocean to the rainforest each year, where it brings phosphorus -- a nutrient plants need to grow.

image

Ice in Antarctica looks solid and still, but it’s actually flowing -- in some places it flows so fast that scientific instruments can move as much as a kilometer (more than half a mile!) a year.

image

Speaking of Antarctica: Ice shelves (the floating part of ice sheets) can be as big as Texas. Because they float, they rise and fall with the tide. So floating ice as big as Texas, attached to the Antarctic Ice Sheet, can rise and fall up to ~26 feet!

image

Melting ice on land makes its way to the ocean. As polar glaciers melt, the water sloshes to the equator, and which can actually slow the spin of Earth.

image

Even though it looks it, the ocean isn’t level. The surface has peaks and valleys and varies due to changes in height of the land below, winds, temperature, saltiness, atmospheric pressure, ocean circulation, and more.

image

Earth isn’t the only mind-blowing place out there. From here, we look out into the rest of the universe, full of weird planets and galaxies that surprise us.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago
image

The year is 1965, and thanks to telecommunication engineers at our Jet Propulsions Laboratory, the first color version of one of our first Martian images had been created. Brought to life by hand coloring numbered strips, this image is a true blast to the past.

Fast forward to the 21st century and our Mars InSight mission now enables us to gawk at the Martian horizon as if we were there. InSight captured this panorama of its landing site on Dec. 9, 2018, the 14th Martian day, or sol, of its mission. The 290-degree perspective surveys the rim of the degraded crater InSight landed in and was made up of 30 photos stitched together.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago
Say Hello To The Jewel Box Cluster 👋

Say hello to the Jewel Box Cluster 👋

This Hubble Space Telescope image shows a young, open star cluster known as NGC 4755 or the Jewel Box. Just like old school friends that drift apart after graduation, the stars in open clusters only remain together for a limited time. They disperse into space over the course of a few hundred million years, pulled away by the gravitational tugs of other passing clusters and clouds of gas.

The Jewel Box is a spartan collection of just over 100 stars. The cluster is about 6,500 light-years away from Earth, which means that the light we see from it today was emitted before the Great Pyramids in Egypt were built.

Head outside and you can see it for yourself! The Jewel Box is visible to the naked eye, but will masquerade as a single star. Grab a pair of binoculars if you want to see more of the cluster’s sparkling stellar population. It is located in the southern constellation of the cross (Crux).

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
  • afrotumble
    afrotumble liked this · 6 months ago
  • wonderinggggg
    wonderinggggg liked this · 8 months ago
  • allatariel
    allatariel liked this · 9 months ago
  • percaerysv
    percaerysv liked this · 1 year ago
  • itsgerges
    itsgerges reblogged this · 1 year ago
  • itsgerges
    itsgerges liked this · 1 year ago
  • tethys-the-aquatic-sea-godness
    tethys-the-aquatic-sea-godness reblogged this · 1 year ago
  • tethys-the-aquatic-sea-godness
    tethys-the-aquatic-sea-godness liked this · 1 year ago
  • pammelete
    pammelete liked this · 1 year ago
  • winkyblinkyandstew
    winkyblinkyandstew liked this · 1 year ago
  • professor-rye
    professor-rye reblogged this · 1 year ago
  • professor-rye
    professor-rye liked this · 1 year ago
  • empty-blog-for-lurking
    empty-blog-for-lurking reblogged this · 1 year ago
  • puppetmaster55
    puppetmaster55 reblogged this · 1 year ago
  • small-cog
    small-cog reblogged this · 1 year ago
  • darthlenaplant
    darthlenaplant liked this · 2 years ago
  • saltythexfilesindianjonescop
    saltythexfilesindianjonescop liked this · 2 years ago
  • shitbuff-blog
    shitbuff-blog liked this · 2 years ago
  • fl17600-leo
    fl17600-leo liked this · 2 years ago
  • vitelio65
    vitelio65 liked this · 2 years ago
  • liciareblogs
    liciareblogs reblogged this · 2 years ago
  • governancesolar
    governancesolar reblogged this · 2 years ago
  • tecmend
    tecmend liked this · 2 years ago
  • gaypataca
    gaypataca liked this · 2 years ago
  • shamelessbagelranchpasta
    shamelessbagelranchpasta liked this · 2 years ago
  • bbquepod
    bbquepod liked this · 2 years ago
  • danield1909
    danield1909 liked this · 2 years ago
  • randomlettrrsqqssfxwcvhxnqbwriro
    randomlettrrsqqssfxwcvhxnqbwriro reblogged this · 2 years ago
  • kingsooyeon
    kingsooyeon liked this · 2 years ago
  • akcrewchief
    akcrewchief liked this · 2 years ago
  • mixreftag
    mixreftag reblogged this · 2 years ago
  • txjock60
    txjock60 liked this · 2 years ago
  • kobayashifh
    kobayashifh liked this · 2 years ago
  • worldoffood23
    worldoffood23 reblogged this · 2 years ago
  • little-victories
    little-victories liked this · 2 years ago
  • nimbus-cloud
    nimbus-cloud reblogged this · 2 years ago
  • thepartyponies
    thepartyponies reblogged this · 2 years ago
  • bluexbourg
    bluexbourg liked this · 2 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags