Hi! I Hope You're Doing Well. I Wanted To Ask, How Do You Land A Job At Nasa?

hi! i hope you're doing well. i wanted to ask, how do you land a job at nasa?

thanks!

More Posts from Nasa and Others

9 years ago

7 Things That Happen When You Go To Space

Told Through Astronaut Scott Kelly’s Tweets

Astronaut Scott Kelly is currently spending a year in space. Most expeditions to the space station last four to six months. By doubling the length of this mission, researchers hope to better understand how the human body reacts and adapts to long-duration spaceflight. During this one-year mission, Kelly is also participating in the Twins Study. While Kelly is in space, his identical twin brother, retired NASA Astronaut Mark Kelly, will participate in a number of comparative genetic studies.

Here are a few things that happen when astronauts go to the space station:

1. Your personal hygiene takes on a different form:

image
image

2. Sleeping arrangements might take some getting used to:

image
image
image

3. Internet services will remind you of the 90s:

image

4. You never have to do laundry:

image
image

5. You get to become immersed in a range of different cultures:

image

6. All of your water is recycled…yes…that means urine too:

image
image

7. You get to see the Earth like never before:

image
image
image

Follow Astronaut Scott Kelly’s Year in Space mission on Facebook, Twitter and Instagram. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

4 years ago

Do you have any messages or tips for other girls who want to study and work in STEM fields?


Tags
6 years ago

Greatest Hits — Craters We Love

Our solar system was built on impacts — some big, some small — some fast, some slow. This week, in honor of a possible newly-discovered large crater here on Earth, here’s a quick run through of some of the more intriguing impacts across our solar system.

1. Mercury: A Basin Bigger Than Texas

image

Mercury does not have a thick atmosphere to protect it from space debris. The small planet is riddled with craters, but none as spectacular as the Caloris Basin. “Basin” is what geologists call craters larger than about 186 miles (300 kilometers) in diameter. Caloris is about 950 miles (1,525 kilometers) across and is ringed by mile-high mountains.

For scale, the state of Texas is 773 miles (1,244 kilometers) wide from east to west.

2. Venus: Tough on Space Rocks

image

Venus’ ultra-thick atmosphere finishes off most meteors before they reach the surface. The planet’s volcanic history has erased many of its craters, but like almost any place with solid ground in our solar system, there are still impact scars to be found. Most of what we know of Venus’ craters comes from radar images provided by orbiting spacecraft, such as NASA’s Magellan.

Mead Crater is the largest known impact site on Venus. It is about 170 miles (275 kilometers) in diameter. The relatively-flat, brighter inner floor of the crater indicates it was filled with impact melt and/or lava.

3. Earth: Still Craters After All These Years

image

Evidence of really big impacts — such as Arizona’s Meteor Crater — are harder to find on Earth. The impact history of our home world has largely been erased by weather and water or buried under lava, rock or ice. Nonetheless, we still find new giant craters occasionally.

A NASA glaciologist has discovered a possible impact crater buried under more than a mile of ice in northwest Greenland.

This follows the finding, announced in November 2018, of a 19-mile (31-kilometer) wide crater beneath Hiawatha Glacier – the first meteorite impact crater ever discovered under Earth’s ice sheets. 

If the second crater, which has a width of over 22 miles (35 kilometers), is ultimately confirmed as the result of a meteorite impact, it will be the 22nd largest impact crater found on Earth.

4. Moon: Our Cratered Companion

image

Want to imagine what Earth might look like without its protective atmosphere, weather, water and other crater-erasing features? Look up at the Moon. The Moon’s pockmarked face offers what may be humanity’s most familiar view of impact craters.

One of the easiest to spot is Tycho, the tight circle and bright, radiating splat are easy slightly off center on the lower-left side of the full moon. Closer views of the 53-mile (85 kilometer)-wide crater from orbiting spacecraft reveal a beautiful central peak, topped with an intriguing boulder that would fill about half of a typical city block.

5. Mars: Still Taking Hits

image

Mars has just enough atmosphere to ensure nail-biting spacecraft landings, but not enough to prevent regular hits from falling space rocks. This dark splat on the Martian south pole is less than a year old, having formed between July and September 2018. The two-toned blast pattern tells a geologic story. The larger, lighter-colored blast pattern could be the result of scouring by winds from the impact shockwave on ice. The darker-colored inner blast pattern is because the impactor penetrated the thin ice layer, blasting the dark sand underneath in all directions.

6. Ceres: What Lies Beneath

image

The bright spots in Ceres’ Occator crater intrigued the world from the moment the approaching Dawn spacecraft first photographed it in 2015. Closer inspection from orbit revealed the spots to be the most visible example of hundreds of bright, salty deposits that decorate the dwarf planet like a smattering of diamonds. The science behind these bright spots is even more compelling: they are mainly sodium carbonate and ammonium chloride that somehow made their way to the surface in a slushy brine from within or below the crust. Thanks to Dawn, scientists have a better sense of how these reflective areas formed and changed over time — processes indicative of an active, evolving world.

7. Comet Tempel 1: We Did It!

image

Scientists have long known we can learn a lot from impact craters — so, in 2005, they made one themselves and watched it happen.

On July 4, 2005, NASA’s Deep Impact spacecraft trained its instruments on an 816-pound (370-kilogram) copper impactor as it smashed into comet Tempel 1.

One of the more surprising findings: The comet has a loose, “fluffy” structure, held together by gravity and contains a surprising amount of organic compounds that are part of the basic building blocks of life.

8. Mimas: May the 4th Be With You

image

Few Star Wars fans — us included — can resist Obi Wan Kenobi's memorable line “That’s no moon…” when images of Saturn’s moon Mimas pop up on a screen. Despite its Death Star-like appearance, Mimas is most definitely a moon. Our Cassini spacecraft checked, a lot — and the superlaser-looking depression is simply an 81-mile (130-kilometer) wide crater named for the moon’s discoverer, William Herschel.

9. Europa: Say What?

image

The Welsh name of this crater on Jupiter’s ocean moon Europa looks like a tongue-twister, but it is easiest pronounced as “pool.” Pwyll is thought to be one of the youngest features we know of on Europa. The bright splat from the impact extends more than 600 miles (about 1,000 kilometers) around the crater, a fresh blanket over rugged, older terrain. “Fresh,” or young, is a relative term in geology; the crater and its rays are likely millions of years old.

10. Show Us Your Greatest Hits

image

Got a passion for Stickney, the dominant bowl-shaped crater on one end of Mars’ moon Phobos? Or a fondness for the sponge-like abundance of impacts on Saturn’s battered moon Hyperion (pictured)? There are countless craters to choose from. Share your favorites with us on Twitter, Instagram and Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
3 years ago

Every day is Asteroid Day at NASA

It’s International Asteroid Day, and today we’re talking about everything asteroids! Although there are no known threats for the next 100 years, our Planetary Defense experts are constantly finding, tracking, and monitoring near-Earth objects to protect our home planet.

Every Day Is Asteroid Day At NASA

Asteroids are rocky remnants from the beginning of our solar system, and as of today, 26,110 near-Earth asteroids have been discovered!

Every Day Is Asteroid Day At NASA

So how do we spot these near-Earth objects? Let’s watch and see:

In addition to tracking and monitoring asteroids, we are also launching several missions to study these rocky relics. By studying asteroids, we can better understand the formation of our solar system. Here are some exciting missions you can look forward to:

OSIRIS-REx: Returning a Sample from Asteroid Bennu

Every Day Is Asteroid Day At NASA

Last year, our OSIRIS-REx mission successfully captured a sample of asteroid Bennu, a 4.5-billion-year-old asteroid the size of the empire state building.

Every Day Is Asteroid Day At NASA

Currently, OSISRIS-REx is making its long journey home carrying this sample as it returns to Earth in 2023.

Psyche: A Journey to a Metal World

Every Day Is Asteroid Day At NASA

Our Psyche mission will journey to a unique metal asteroid orbiting the Sun between Jupiter and Mars.

Every Day Is Asteroid Day At NASA

What makes the asteroid Psyche unique is that it appears to be the exposed nickel-iron core of an early planet, one of the building blocks of our solar system. Deep within rocky, terrestrial planets - including Earth - scientists infer the presence of metallic cores, but these lie unreachably far below the planets' rocky mantles and crusts. Because we cannot see or measure Earth's core directly, Psyche offers a unique window into the violent history of collisions and accretion that created terrestrial planets.

Lucy: Studying the Trojan Asteroids

Every Day Is Asteroid Day At NASA

Launching this year, our Lucy mission will be the first mission to study the Trojans, a group of asteroids that share Jupiter’s orbit around the Sun. Time capsules from the birth of our Solar System more than 4 billion years ago, the swarms of Trojan asteroids associated with Jupiter are thought to be remnants of the primordial material that formed the outer planets.

Every Day Is Asteroid Day At NASA

The mission takes its name from the fossilized human ancestor (called “Lucy” by her discoverers) whose skeleton provided unique insight into humanity's evolution. Likewise, the Lucy mission will revolutionize our knowledge of planetary origins and the formation of the solar system.

DART: Double Asteroid Redirection Test

Every Day Is Asteroid Day At NASA

Launching this year, our DART mission is a planetary defense driven test of technologies and will be the first demonstration of a technique to change the motion of an asteroid in space.

The destination of this mission is the small asteroid Dimorphos, which orbits slowly around its larger companion Didymos. Dimorphos is referred to as a moonlet since it orbits a larger asteroid.

The DART spacecraft will achieve the kinetic impact deflection by deliberately crashing itself into the moonlet. The collision will change the speed of the moonlet in its orbit around the main body by a fraction of one percent, but this will change the orbital period of the moonlet by several minutes - enough to be observed and measured using telescopes on Earth.

At NASA, every day is asteroid day, as we have missions exploring these time capsules of our solar system and surveying the sky daily to find potential hazards. We, along with our partners are watching the skies 24/7/365, so rest assured! We're always looking up.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago

Questions coming up from….

@Dee-an-ugh-deactivated20210528: My 4-year-old is already interested in space. How can I nurture her interest the older she gets in a productive way

@marvelpjostarwarsobssessed: What inspired/caused your interest in space?

@Anonymous: Do you like your job?


Tags
2 years ago

Caution: Universe Work Ahead 🚧

We only have one universe. That’s usually plenty – it’s pretty big after all! But there are some things scientists can’t do with our real universe that they can do if they build new ones using computers.

The universes they create aren’t real, but they’re important tools to help us understand the cosmos. Two teams of scientists recently created a couple of these simulations to help us learn how our Nancy Grace Roman Space Telescope sets out to unveil the universe’s distant past and give us a glimpse of possible futures.

Caution: you are now entering a cosmic construction zone (no hard hat required)!

A black square covered in thousands of tiny red dots and thousands more slightly larger, white and yellow fuzzy blobs. Each speck is a simulated galaxy. Credit: M. Troxel and Caltech-IPAC/R. Hurt

This simulated Roman deep field image, containing hundreds of thousands of galaxies, represents just 1.3 percent of the synthetic survey, which is itself just one percent of Roman's planned survey. The full simulation is available here. The galaxies are color coded – redder ones are farther away, and whiter ones are nearer. The simulation showcases Roman’s power to conduct large, deep surveys and study the universe statistically in ways that aren’t possible with current telescopes.

One Roman simulation is helping scientists plan how to study cosmic evolution by teaming up with other telescopes, like the Vera C. Rubin Observatory. It’s based on galaxy and dark matter models combined with real data from other telescopes. It envisions a big patch of the sky Roman will survey when it launches by 2027. Scientists are exploring the simulation to make observation plans so Roman will help us learn as much as possible. It’s a sneak peek at what we could figure out about how and why our universe has changed dramatically across cosmic epochs.

This video begins by showing the most distant galaxies in the simulated deep field image in red. As it zooms out, layers of nearer (yellow and white) galaxies are added to the frame. By studying different cosmic epochs, Roman will be able to trace the universe's expansion history, study how galaxies developed over time, and much more.

As part of the real future survey, Roman will study the structure and evolution of the universe, map dark matter – an invisible substance detectable only by seeing its gravitational effects on visible matter – and discern between the leading theories that attempt to explain why the expansion of the universe is speeding up. It will do it by traveling back in time…well, sort of.

Seeing into the past

Looking way out into space is kind of like using a time machine. That’s because the light emitted by distant galaxies takes longer to reach us than light from ones that are nearby. When we look at farther galaxies, we see the universe as it was when their light was emitted. That can help us see billions of years into the past. Comparing what the universe was like at different ages will help astronomers piece together the way it has transformed over time.

The animation starts with a deep field image of the universe, showing warm toned galaxies as small specks dusted on a black backdrop. Then the center is distorted as additional layers of galaxies are added. The center appears to bulge toward the viewer, and galaxies are enlarged and smeared into arcs. Credit: Caltech-IPAC/R. Hurt

This animation shows the type of science that astronomers will be able to do with future Roman deep field observations. The gravity of intervening galaxy clusters and dark matter can lens the light from farther objects, warping their appearance as shown in the animation. By studying the distorted light, astronomers can study elusive dark matter, which can only be measured indirectly through its gravitational effects on visible matter. As a bonus, this lensing also makes it easier to see the most distant galaxies whose light they magnify.

The simulation demonstrates how Roman will see even farther back in time thanks to natural magnifying glasses in space. Huge clusters of galaxies are so massive that they warp the fabric of space-time, kind of like how a bowling ball creates a well when placed on a trampoline. When light from more distant galaxies passes close to a galaxy cluster, it follows the curved space-time and bends around the cluster. That lenses the light, producing brighter, distorted images of the farther galaxies.

Roman will be sensitive enough to use this phenomenon to see how even small masses, like clumps of dark matter, warp the appearance of distant galaxies. That will help narrow down the candidates for what dark matter could be made of.

Three small squares filled with bluish dots emerge from a black screen. The black background is then filled with bluish dots too, and then the frame zooms out to see a much larger area of the dots. Credit: NASA's Goddard Space Flight Center and A. Yung

In this simulated view of the deep cosmos, each dot represents a galaxy. The three small squares show Hubble's field of view, and each reveals a different region of the synthetic universe. Roman will be able to quickly survey an area as large as the whole zoomed-out image, which will give us a glimpse of the universe’s largest structures.

Constructing the cosmos over billions of years

A separate simulation shows what Roman might expect to see across more than 10 billion years of cosmic history. It’s based on a galaxy formation model that represents our current understanding of how the universe works. That means that Roman can put that model to the test when it delivers real observations, since astronomers can compare what they expected to see with what’s really out there.

A cone shaped assortment of blue dots is on a grid. The tip of the cone is labeled "present day," and the other end is labeled "13.4 billion years ago." Three slices from the middle are pulled out and show the universe's structure developing over time. Credit: NASA's Goddard Space Flight Center and A. Yung

In this side view of the simulated universe, each dot represents a galaxy whose size and brightness corresponds to its mass. Slices from different epochs illustrate how Roman will be able to view the universe across cosmic history. Astronomers will use such observations to piece together how cosmic evolution led to the web-like structure we see today.

This simulation also shows how Roman will help us learn how extremely large structures in the cosmos were constructed over time. For hundreds of millions of years after the universe was born, it was filled with a sea of charged particles that was almost completely uniform. Today, billions of years later, there are galaxies and galaxy clusters glowing in clumps along invisible threads of dark matter that extend hundreds of millions of light-years. Vast “cosmic voids” are found in between all the shining strands.

Astronomers have connected some of the dots between the universe’s early days and today, but it’s been difficult to see the big picture. Roman’s broad view of space will help us quickly see the universe’s web-like structure for the first time. That’s something that would take Hubble or Webb decades to do! Scientists will also use Roman to view different slices of the universe and piece together all the snapshots in time. We’re looking forward to learning how the cosmos grew and developed to its present state and finding clues about its ultimate fate.

Thousands of small, light and deep blue dots cover a black background representing galaxies in a simulated universe. A tiny white square is labeled "Hubble." A set of 18 much larger squares, oriented in three curved rows, are labeled "Roman." Credit: NASA's Goddard Space Flight Center and A. Yung

This image, containing millions of simulated galaxies strewn across space and time, shows the areas Hubble (white) and Roman (yellow) can capture in a single snapshot. It would take Hubble about 85 years to map the entire region shown in the image at the same depth, but Roman could do it in just 63 days. Roman’s larger view and fast survey speeds will unveil the evolving universe in ways that have never been possible before.

Roman will explore the cosmos as no telescope ever has before, combining a panoramic view of the universe with a vantage point in space. Each picture it sends back will let us see areas that are at least a hundred times larger than our Hubble or James Webb space telescopes can see at one time. Astronomers will study them to learn more about how galaxies were constructed, dark matter, and much more.

The simulations are much more than just pretty pictures – they’re important stepping stones that forecast what we can expect to see with Roman. We’ve never had a view like Roman’s before, so having a preview helps make sure we can make the most of this incredible mission when it launches.

Learn more about the exciting science this mission will investigate on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago
How Will The James Webb Space Telescope Change How We See The Universe? Ask An Expert!

How will the James Webb Space Telescope change how we see the universe? Ask an expert!

The James Webb Space Telescope is launching on December 22, 2021. Webb’s revolutionary technology will explore every phase of cosmic history—from within our solar system to the most distant observable galaxies in the early universe, to everything in between. Postdoctoral Research Associate Naomi Rowe-Gurney will be taking your questions about Webb and Webb science in an Answer Time session on Tuesday, December 14 from noon to 1 p.m EST here on our Tumblr!

🚨 Ask your questions now by visiting http://nasa.tumblr.com/ask.

Dr. Naomi Rowe-Gurney recently completed her PhD at the University of Leicester and is now working at NASA Goddard Space Flight Center as a postdoc through Howard University. As a planetary scientist for the James Webb Space Telescope, she’s an expert on the atmospheres of the ice giants in our solar system — Uranus and Neptune — and how the Webb telescope will be able to learn more about them.

How Will The James Webb Space Telescope Change How We See The Universe? Ask An Expert!

The James Webb Space Telescope – fun facts:

Webb is so big it has to fold origami-style to fit into its rocket and will unfold like a “Transformer” in space.

Webb is about 100 times more powerful than the Hubble Space Telescope and designed to see the infrared, a region Hubble can only peek at.

With unprecedented sensitivity, it will peer back in time over 13.5 billion years to see the first galaxies born after the Big Bang––a part of space we’ve never seen.

It will study galaxies near and far, young and old, to understand how they evolve.

Webb will explore distant worlds and study the atmospheres of planets orbiting other stars, known as exoplanets, searching for chemical fingerprints of possible habitability.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
5 years ago
Say Hello To Globular cluster 47 Tucanae 👋

Say hello to globular cluster 47 Tucanae 👋

This glittery spray of ancient stars is about 16,700 light-years away from Earth toward the constellation Tucana. Globular clusters like this one are isolated star cities, home to hundreds of thousands of stars that are held together by their mutual gravity. And like the fast pace of cities, there's plenty of action in these stellar metropolises. The stars are in constant motion, orbiting around the cluster's center.

Past observations have shown that the heavyweight stars tend to crowd into the “downtown” core area, while lightweight stars reside in the less populated suburbs. But as heavyweight stars age, they rapidly lose mass, cool down and shut off their nuclear furnaces. After the purge, only the stars' bright, superhot cores – called white dwarfs – remain. This weight loss program causes the now lighter-weight white dwarfs to be nudged out of the downtown area through gravitational interactions with heftier stars.

Until these Hubble observations, astronomers had never seen the dynamic conveyor belt in action. The Hubble results reveal young white dwarfs amid their leisurely 40-million-year exodus from the bustling center of the cluster.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

What future missions are you looking forward to the most?


Tags
8 years ago

Cool Space GIFs from the Internet

There’s a lot of historical and archived space footage on the internet and we’re excited to see that the public (you!) have taken it to create many other products that teach people about exploration, space and our universe. Among those products are GIFs. Those quick videos that help you express what you’re trying to say via text, or make you laugh while surfing the web.

Are space GIFs the new cat videos of the internet? Don’t know, but we sure do like them!

Here are a few neat space GIFs from the internet…

This GIF of the Cat Eye Nebula shows it in various wavelengths…

image

Followed by a GIF of a cat in space…floating in front of the Antennae galaxies...

image

One time, a frog actually photobombed the launch of our LADEE spacecraft…someone on the internet gave him a parachute…

image

Want to see what it’s like to play soccer in space? There’s a GIF for that…

image

There are also some beautiful GIFs looking through the Cupola window on the International Space Station…

image
image

This warped footage from the International Space Station gives us ride around the Earth…

image

While this one encourages us to explore the unknown...

image

When our New Horizons spacecraft flew by dwarf planet Pluto in 2015, the internet couldn’t get enough of the Pluto GIFs...

image
image

NASA GIFs

Cool Space GIFs From The Internet

Want to dive into a black hole of other fun space GIFs? Check out our GIPHY page HERE.

Want to use our GIFs?! You can! Our GIFs are accessible directly from the Twitter app. Just tap or click the GIF button in the Twitter tool bar, search for NASAGIF, and all NASA GIFs will appear for sharing and tweeting. Enjoy!

GIF Sources

Cat Eye GIF: https://giphy.com/gifs/astronomy-cZpDWjSlKjWPm Cat GIF: https://giphy.com/gifs/cat-HopYL0SamcCli Frog GIF: https://giphy.com/gifs/nasa-photo-rocket-NOsCSDT2rUgfK Soccer GIF: https://giphy.com/gifs/yahoo-astronauts-zerogravity-QF1ZomA11zofC Cupola 1 GIF: https://giphy.com/gifs/nasa-Mcoxp6TgvQm6A Cupola 2 GIF: https://giphy.com/gifs/timelapse-space-11f3o8D2rQWzCM Earth GIF: http://giphy.com/gifs/earth-milky-way-international-space-station-ONC6WgECm5KEw Explore GIF: https://giphy.com/gifs/text-timelapse-lapse-Vj7gwAvhgsDYs Pluto 1 GIF: https://giphy.com/gifs/l46CzjUnYFfeMXiNO Pluto 2 GIF: https://giphy.com/gifs/pluto-dbV1LkFWWob84

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • watch
    watch reblogged this · 1 year ago
  • ninapina
    ninapina liked this · 2 years ago
  • trashpita
    trashpita reblogged this · 2 years ago
  • dr-stxrk
    dr-stxrk reblogged this · 2 years ago
  • ulmega
    ulmega liked this · 3 years ago
  • klng0f-n0thingg00
    klng0f-n0thingg00 liked this · 3 years ago
  • abdullah552az
    abdullah552az liked this · 3 years ago
  • erdenebyamba
    erdenebyamba liked this · 3 years ago
  • dawgstreetbank20trillion
    dawgstreetbank20trillion liked this · 3 years ago
  • israrhusain
    israrhusain liked this · 3 years ago
  • rockymountainlegend
    rockymountainlegend liked this · 3 years ago
  • zhenzhein
    zhenzhein liked this · 3 years ago
  • mdjony
    mdjony liked this · 3 years ago
  • emmylouhue85
    emmylouhue85 liked this · 4 years ago
  • vap01
    vap01 liked this · 4 years ago
  • lovenow97praguar
    lovenow97praguar liked this · 4 years ago
  • canigohomenow02
    canigohomenow02 liked this · 4 years ago
  • mawusifitnesstraining
    mawusifitnesstraining liked this · 4 years ago
  • beardedtreecherryblossom
    beardedtreecherryblossom reblogged this · 4 years ago
  • edsonlima17
    edsonlima17 liked this · 4 years ago
  • foggypeanutneckvoid
    foggypeanutneckvoid liked this · 4 years ago
  • backchic
    backchic reblogged this · 4 years ago
  • bemorealien
    bemorealien liked this · 4 years ago
  • cupcakescanfly
    cupcakescanfly liked this · 4 years ago
  • missionchessboxing
    missionchessboxing liked this · 4 years ago
  • fhhsing-blog
    fhhsing-blog liked this · 4 years ago
  • aamerk2
    aamerk2 liked this · 4 years ago
  • blue-jester
    blue-jester liked this · 4 years ago
  • icecreamango
    icecreamango liked this · 4 years ago
  • william-is-bisexual-blog
    william-is-bisexual-blog liked this · 4 years ago
  • sentient-catctus
    sentient-catctus liked this · 4 years ago
  • child-of-addiction
    child-of-addiction liked this · 4 years ago
  • kit-thebug
    kit-thebug liked this · 4 years ago
  • abrokendawn
    abrokendawn liked this · 4 years ago
  • harleythecosmonaut
    harleythecosmonaut liked this · 4 years ago
  • sherlocksittinginthelittlecouch
    sherlocksittinginthelittlecouch liked this · 4 years ago
  • johanneswelwich
    johanneswelwich liked this · 4 years ago
  • warmsmilesandhugs
    warmsmilesandhugs liked this · 4 years ago
  • flamesparks
    flamesparks liked this · 4 years ago
  • fangirlfindingfun
    fangirlfindingfun liked this · 4 years ago
  • butyoutoldmeiwasfunny
    butyoutoldmeiwasfunny reblogged this · 4 years ago
  • propinquitine
    propinquitine liked this · 4 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags