One Hot Year After Another

One Hot Year after Another

Globally, 2020 was the hottest year on record, effectively tying 2016, the previous record. Overall, Earth’s average temperature has risen more than 2 degrees Fahrenheit since the 1880s.

image

Temperatures are increasing due to human activities, specifically emissions of greenhouse gases, like carbon dioxide and methane. 

Heat and the energy it carries are what drive our planet: winds, weather, droughts, floods, and more are expressions of heat. The right amount of heat is even one of the things that makes life on Earth possible. But too much heat is changing the way our planet’s systems act.

My World’s on Fire

Higher temperatures drive longer, more intense fire seasons. As rain and snowfall patterns change, some regions are getting drier and more vulnerable to damage, setting the stage for more fires.

image

2020 saw several record-breaking fires, both in Australia in the beginning of the year, and in the western U.S. through northern summer and fall. Smoke from fires in both regions reached so high into the atmosphere that it formed clouds and continues to travel around the globe today.

image

In the Siberian Arctic, unusually high temperatures helped drive at least 19 fires in the region. More than half of them were burning peat soil -- decomposed organic materials -- that stores a lot of carbon. Peat fires release vast amounts of carbon into the atmosphere, potentially leading to even more warming.

image

The Water’s Getting Warm

It wasn’t just fire seasons setting records. 2020 had more named tropical storms in the Atlantic and more storms making landfall in the U.S. than any hurricane season on record.

image

Hurricanes rely on warm ocean water as fuel, and this year, the Atlantic provided. 30 named storms weren’t the only things that made this year’s hurricane season notable.

image

Storms like Eta, Delta, and Iota quickly changed from smaller, weaker tropical storms into more destructive hurricanes. This rapid intensification is complicated, but it’s likely that warmer, more humid weather -- a result of climate change -- helps drive it.

image

The Ice Is Getting Thin

Add enough heat, and even the biggest chunk of ice will melt. That’s true whether we’re talking about the ice cubes in your glass or the vast sheets of ice at our planet’s poles. Right now, the Arctic region is warming about three times faster than the rest of our planet, which has some major effects both locally and globally.

image

This year, Arctic sea ice hit a near-record low. Sea ice is actually made of frozen ocean water, and it grows and thaws with the seasons, typically reaching an annual minimum extent in September.

image

Warmer ocean water led to more ice melting this year, and 2020’s annual minimum extent continued a long trend of shrinking Arctic sea ice extent.

A Long Trend

We study Earth and how it’s changing from the ground, the sky, and space. Using data from sensors all around the planet, we calculate the global average temperature, working with our partners at NOAA.

Many other organizations also track global temperature using their own instruments and methods, and they all match remarkably well. The last seven years were the hottest seven years on record. Earth is getting warmer.

image

We also study the effects of increasing temperatures, like the melting sea ice and longer fire seasons mentioned above. Additionally, we can study the cause of climate change from space, with a bird’s eye view of increasing carbon in the atmosphere.

image

The planet is changing because of human activities. We’re working together with other agencies to monitor changes and understand what this means for people in the future.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Nasa and Others

6 years ago

@flood123789: What does it feel like to drink a lot of water in zero gravity


Tags
8 years ago
Glittering Frisbee Galaxy: This Image From Hubble's Shows A Section Of A Spiral Galaxy Located About

Glittering Frisbee Galaxy: This image from Hubble's shows a section of a spiral galaxy located about 50 million light-years from Earth. We tend to think of spiral galaxies as massive and roughly circular celestial bodies, so this glittering oval does not immediately appear to fit the visual bill. What's going on? Imagine a spiral galaxy as a circular frisbee spinning gently in space. When we see it face on, our observations reveal a spectacular amount of detail and structure. However, the galaxy frisbee is very nearly edge-on with respect to Earth, giving it an appearance that is more oval than circular. The spiral arms, which curve out from the galaxy's dense core, can just about be seen. Although spiral galaxies might appear static with their picturesque shapes frozen in space, this is very far from the truth. The stars in these dramatic spiral configurations are constantly moving as they orbit around the galaxy's core, with those on the inside making the orbit faster than those sitting further out. This makes the formation and continued existence of a spiral galaxy's arms something of a cosmic puzzle, because the arms wrapped around the spinning core should become wound tighter and tighter as time goes on - but this is not what we see. This is known as the winding problem. Image credit: ESA/Hubble & NASA For more information on this image, visit: https://go.nasa.gov/2niODGL


Tags
8 years ago

One Year Later

On March 1, 2016, veteran astronaut Scott Kelly returned from his Year in Space mission. In many ways, the adventure was just beginning.

image

The spaceflight part of the One Year Misson to the International Space Station ended a year ago today, but the science behind it is still moving. Astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko continue to provide samples for the data collection from their ground-breaking mission. Results are expected to to start coming later in 2017, which will help launch humanity on deep space missions.

image

Kelly not only commanded the International Space Station’s Expedition 46, he participated in spacewalks like this one on Dec. 21, 2015, in which Kelly and astronaut Tim Kopra successfully moved the Space Station's mobile transporter rail car ahead of the docking of a Russian cargo supply spacecraft.

image

On the station in 2015, Kelly showed off his home away from home. Scott tweeted this image out with the comment: "My #bedroom aboard #ISS. All the comforts of #home. Well, most of them. #YearInSpace." 

Why was the Year In Space important? As we work to extend our reach beyond low-Earth orbit, how the human body reacts to microgravity for extended periods is of paramount importance. Not only were Kelly and his Russian counterpart monitored throughout the mission, they both continue to submit to tests and monitoring one year later to see if there are any lasting effects from their voyage aboard the station. 

Scott Kelly also a human control here on Earth, his identical twin brother and fellow astronaut Mark Kelly. Both brothers have served aboard the International Space Station, but Scott’s stay was almost twice as long as typical U.S. missions. The continuing investigations are yielding beneficial knowledge on the medical, psychological and biomedical challenges faced by astronauts during long-duration spaceflight.


Tags
1 year ago
Bright orange active spots make the shape of two eyes and a grin, making the Sun look like a jack-o'-lantern. The rest of the Sun is dark in comparison, with an orange outline distinguishing the star from the darkness of space.

Credit: NASA/SDO

Boo! Did we get you? 🎃

This solar jack-o-lantern, captured by our Solar Dynamics Observatory (SDO) in October 2014, gets its ghoulish grin from active regions on the Sun, which emit more light and energy than the surrounding dark areas. Active regions are markers of an intense and complex set of magnetic fields hovering in the sun’s atmosphere.

The SDO has kept an unblinking eye on the Sun since 2010, recording phenomena like solar flares and coronal loops. It measures the Sun’s interior, atmosphere, magnetic field, and energy output, helping us understand our nearest star.

Grab the high-resolution version here.

Make sure to follow us on Tumblr for your regular dose of space!

6 years ago

5 Reasons our Space Launch System is the Backbone for Deep Space Exploration

Our Space Launch System (SLS) will be the world’s most powerful rocket, engineered to carry astronauts and cargo farther and faster than any rocket ever built. Here are five reasons it is the backbone of bold, deep space exploration missions.

image

5. We’re Building This Rocket to Take Humans to the Moon and Beyond

The SLS rocket is a national asset for leading new missions to deep space. More than 1,000 large and small companies in 44 states are building the rocket that will take humans to the Moon. Work on SLS has an economic impact of $5.7 billion and generates 32,000 jobs. Small businesses across the U.S. supply 40 percent of the raw materials for the rocket. An investment in SLS is an investment in human spaceflight and in American industry and will lead to applications beyond NASA.

image

4. This Rocket is Built for Humans

Modern deep space systems are designed and built to keep humans safe from launch to landing.  SLS provides the power to safely send the Orion spacecraft and astronauts to the Moon. Orion, powered by the European Service Module, keeps the crew safe during the mission. Exploration Ground Systems at NASA’s Kennedy Space Center in Florida, safely launches the SLS with Orion on top and recovers the astronauts and Orion after splashdown.

image

3. This Rocket is Engineered for a Variety of Exploration Missions

SLS is engineered for decades of human space exploration to come. SLS is not just one rocket but a transportation system that evolves to meet the needs of a variety of missions. The rocket can send more than 26 metric tons (57,000 pounds) to the Moon and can evolve to send up to 45 metric tons (99,000 pounds) to the Moon. NASA has the expertise to meet the challenges of designing and building a new, complex rocket that evolves over time while developing our nation’s capability to extend human existence into deep space.

image

2. This Rocket can Carry Crews and Cargos Farther, Faster

SLS’s versatile design enables it to carry astronauts their supplies as well as cargo for resupply and send science missions far in the solar system. With its power and unprecedented ability to transport heavy and large volume science payloads in a single mission, SLS can send cargos to Mars or probes even farther out in the solar system, such as to Jupiter’s moon Europa, faster than any other rocket flying today. The rocket’s large cargo volume makes it possible to design planetary probes, telescopes and other scientific instruments with fewer complex mechanical parts.

image

1. This Rocket Complements International and Commercial Partners

The Space Launch System is the right rocket to enable exploration on and around the Moon and even longer missions away from home. SLS makes it possible for astronauts to bring along supplies and equipment needed to explore, such as pieces of the Gateway, which will be the cornerstone of sustainable lunar exploration. SLS’s ability to launch both people and payloads to deep space in a single mission makes space travel safer and more efficient. With no buildings, hardware or grocery stores on the Moon or Mars, there are plenty of opportunities for support by other rockets. SLS and contributions by international and commercial partners will make it possible to return to the Moon and create a springboard for exploration of other areas in the solar system where we can discover and expand knowledge for the benefit of humanity.

image

Learn more about the Space Launch System.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago

A Q&A from the Space Station!

Did you miss it? Astronaut Scott Kelly answered questions over the weekend on People Magazine’s Facebook page! Anything and everything from his favorite food in space to his year aboard the International Space Station. 

Here are a few highlights from the conversation:

image
image
image
image
image
image
image
image
image

Follow Astronaut Scott Kelly during the remainder of his year in space: Facebook, Twitter, Instagram

Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com


Tags
9 years ago

How Well Do you Know Neptune?

image

Dark, cold and whipped by supersonic winds, Neptune is the last of the hydrogen and helium gas giants in our solar system. More than 30 times as far from the sun as Earth, the planet takes almost 165 Earth years to orbit our sun! In fact, in 2011, Neptune completed its first orbit since its discovery in 1846.

image

Here are a few things you might not know about the windiest planet:

If the sun were as tall as a typical front door, the Earth would be the size of a nickel and Neptune would be about as big as a baseball.

Neptune orbits our sun, a star. Neptune is the eighth planet from the sun at a distance of about 4.5 billion km (2.8 billion miles) or 30.07 AU. 

One day on Neptune takes about 16 hours (the time it takes for Neptune to rotate or spin once)

Neptune makes a complete orbit around the sun (a year in Neptunian time) in about 165 Earth years (60,190 Earth days)

Neptune has six rings

Voyager 2 is the only spacecraft to have visited Neptune

Neptune has 13 moons. They are named after various sea gods and nymphs in Greek mythology

Did you know that Neptune has storms?

image

Similar to Jupiter, Neptune has storms that create gigantic spots in its atmosphere…well, it did. When Voyager 2 flew past Neptune in 1989, it tracked and imaged the “Great Dark Spot” — a storm larger than the entire Earth! When the Hubble Space Telescope imaged Neptune the spot had disappeared, only to be replaced with two smaller storms, which in turn also disappeared.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

10 Ways to BBQ on an Alien World

There are over 3,700 planets in our galaxy. Many of them orbit stars outside our solar system, these are known as exoplanets. Spend a summer weekend barbecuing it up on any of these alien worlds.

(WARNING: Don't try any of this on Earth—except the last one.)

1. Lava World

Janssen aka 55 Cancri e

10 Ways To BBQ On An Alien World

Hang your steak on a fishing pole and dangle your meat over the boiling pools of lava on this possible magma world. Try two to three minutes on each side to get an ashy feast of deliciousness.

2. Hot Jupiter

Dimidium aka 51 Pegasi b

10 Ways To BBQ On An Alien World

Set your grill to 1800 degrees Fahrenheit (982 degrees Celsius) or hop onto the first exoplanet discovered and get a perfect char on your hot dogs. By the time your dogs are done, it’ll be New Year’s Eve, because a year on this planet is only four days long.

3. Super Earth

HD 40307 g

10 Ways To BBQ On An Alien World

Super air fry your duck on this Super Earth, as you skydive in the intense gravity of a planet twice as massive as Earth. Why are you air frying a duck? We don’t know. Why are you skydiving on an exoplanet? We’re not judging.

4. Lightning Neptune

HAT-P-11b

10 Ways To BBQ On An Alien World

I’ve got steaks, they’re multiplying/and I’m looooosing control. Cause the power this planet is supplying/is electrifying!

Sear your tuna to perfection in the lightning strikes that could flash across the stormy skies of this Neptune-like planet named HAT-P-11b.

5. Red Earth

Kepler-186f

10 Ways To BBQ On An Alien World

Tired of all that meat? Try a multi-colored salad with the vibrant plants that could grow under the red sun of this Earth-sized planet. But it could also be a lifeless rock, so BYOB (bring your own barbecue).

6. Inferno World

Kepler-70b

10 Ways To BBQ On An Alien World

Don’t take too long to prep your vegetables for the grill! The hottest planet on record will flash-incinerate your veggies in seconds!

7. Egg-shaped

WASP-12b

10 Ways To BBQ On An Alien World

Picture this: You are pressure cooking your chicken on a hot gas giant in the shape of an egg. And you’re under pressure to cook fast, because this gas giant is being pulled apart by its nearby star.

8. Two suns

Kepler-16b

10 Ways To BBQ On An Alien World

Evenly cook your ribs in a dual convection oven under the dual stars of this “Tatooine.” Kick back and watch your two shadows grow in the fading light of a double sunset.

9. Takeout

Venus

10 Ways To BBQ On An Alien World

Order in for a staycation in our own solar system. The smell of rotten eggs rising from the clouds of sulfuric acid and choking carbon dioxide will put you off cooking, so get that meal to go.

10. Take a Breath

Earth

10 Ways To BBQ On An Alien World

Sometimes the best vacations are the ones you take at home. Flip your burgers on the only planet where you can breathe the atmosphere.

Grill us on Twitter and tell us how bad our jokes are.

Read the full version of this week’s ‘Solar System: 10 Things to Know’ Article HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
1 year ago
: Data visualization of global temperature anomalies progressing from 1880 to 2023 mapped onto Earth. The map uses color to represent anomalies, ranging from blue for below average temperatures, white for temperatures at baseline, and yellows ranging through oranges and reds to represent higher and higher than average temperatures. At the beginning of the time series, the map is primarily blues and whites, with a few spots of yellow, indicating that temperatures overall are below the baseline. As time progresses, the colors shift and move, with less and less blue and white and more and more yellow, then orange, and red. By 2023, the map is mostly yellow with lots of orange and red. The Arctic region, Europe, Asia, North America, central South America, and the Antarctic peninsula are all dark red, indicating the highest temperature anomalies. Credit: NASA’s Scientific Visualization Studio

Six Answers to Questions You’re Too Embarrassed to Ask about the Hottest Year on Record

You may have seen the news that 2023 was the hottest year in NASA’s record, continuing a trend of warming global temperatures. But have you ever wondered what in the world that actually means and how we know?

We talked to some of our climate scientists to get clarity on what a temperature record is, what happened in 2023, and what we can expect to happen in the future… so you don’t have to!

Graph of carbon dioxide emissions from just before 1960 to present day. The X-axis shows years, with each decade listed. The Y-axis shows parts per million of carbon dioxide in the atmosphere. It starts at 300 and runs to 420 ppm. The line on the graph is a fairly straightforward upward trajectory, starting below 320 ppm in 1960 and running to over 420 ppm in 2023. The line on the graph does spike up and down within each year, showcasing the seasonal cycle of carbon dioxide uptake. However, the spikes are extremely minor compared to the upward trajectory. Credit: NOAA

1. Why was 2023 the warmest year on record?

The short answer: Human activities. The release of greenhouse gases like carbon dioxide and methane into the atmosphere trap more heat near Earth’s surface, raising global temperatures. This is responsible for the decades-long warming trend we’re living through.

But this year’s record wasn’t just because of human activities. The last few years, we’ve been experiencing the cooler phase of a natural pattern of Pacific Ocean temperatures called the El Niño Southern Oscillation (ENSO). This phase, known as La Niña, tends to cool temperatures slightly around the world. In mid-2023, we started to shift into the warmer phase, known as El Niño. The shift ENSO brought, combined with overall human-driven warming and other factors we’re continuing to study, pushed 2023 to a new record high temperature.

A climate spiral animation. The chart is circular with the year in the center and months of the year around the outside. There are three concentric circles labeled with measures from negative 2 degrees Fahrenheit to 2 degrees Fahrenheit, with the outer ring being the largest value. As the years count up, a line spirals through the months of the year and around the circle. The line starts with blue hues when temperatures are below average and changes to red and orange hues when temperatures are above average. As the spiral progresses, the lines form a deformed circle that becomes larger and more red, indicating Earth’s warming up to just above 2 degrees Fahrenheit above average. Credit: NASA’s Scientific Visualization Studio

2. So will every year be a record now?

Almost certainly not. Although the overall trend in annual temperatures is warmer, there’s some year-to-year variation, like ENSO we mentioned above.

Think about Texas and Minnesota. On the whole, Texas is warmer than Minnesota. But some days, stormy weather could bring cooler temperatures to Texas while Minnesota is suffering through a local heat wave. On those days, the weather in Minnesota could be warmer than the weather in Texas. That doesn’t mean Minnesota is warmer than Texas overall; we’re just experiencing a little short-term variation.

Something similar happens with global annual temperatures. The globe will naturally shift back to La Niña in the next few years, bringing a slight cooling effect. Because of human carbon emissions, current La Niña years will be warmer than La Niña years were in the past, but they’ll likely still be cooler than current El Niño years.

Visualization of Earth, rotating, speckled with tiny dots in various colors, representing surface temperature measurements taken over the course of a year. Most of the land surfaces are heavily covered in red dots, which represent land measurements. Yellow dots create streaks across the ocean, representing measurements taken by ships. Pink dots irregularly scattered across the ocean represent measurements from floating ocean buoys. Orange dots similar across the ocean represent measurements from moored buoys. Green dots, primarily along coasts, represent tidal gauge measurements. Finally, a handful of blue dots represent all other measurement locations. Credit: NASA’s Scientific Visualization Studio

3. What do we mean by “on record”?

Technically, NASA’s global temperature record starts in 1880. NASA didn’t exist back then, but temperature data were being collected by sailing ships, weather stations, and scientists in enough places around the world to reconstruct a global average temperature. We use those data and our modern techniques to calculate the average.

We start in 1880, because that’s when thermometers and other instruments became technologically advanced and widespread enough to reliably measure and calculate a global average. Today, we make those calculations based on millions of measurements taken from weather stations and Antarctic research stations on land, and ships and ocean buoys at sea. So, we can confidently say 2023 is the warmest year in the last century and a half.

A line graph of temperatures in the Northern Hemisphere Extratropics, Reconstructed Summer, which is May to August, Temperature. The Y-axis is Temperature Anomaly, running from -2 degrees Celsius to 2 degrees Celsius. The X-axis is Years, from 600 to 2023. A jagged black line runs just around the 0 degree Celsius line, with each year slightly higher or lower than the previous, but none jumping above or below 1 and -1 degrees, until just before the year 2000. Around the year 1900, the jagged line begins to climb upwards, reaching to above 1 degree Celsius. At around the time the temperature starts to climb, a red line, indicating NASA’s temperature record, maps very closely to the black line. At the very end, the red line jumps even higher than the black line, reaching almost to 2 degrees Celsius. Credit: NASA/Peter Jacobs using data from N-TREND / Rob Wilson at University of St. Andrews

However, we actually have a really good idea of what global climate looked like for tens of thousands of years before 1880, relying on other, indirect ways of measuring temperature. We can look at tree rings or cores drilled from ice sheets to reconstruct Earth’s more ancient climate. These measurements affirm that current warming on Earth is happening at an unprecedented speed.

4. Why does a space agency keep a record of Earth’s temperature?

It’s literally our job! When NASA was formed in 1958, our original charter called for “the expansion of human knowledge of phenomena in the atmosphere and space.” Our very first space missions uncovered surprises about Earth, and we’ve been using the vantage point of space to study our home planet ever since. Right now, we have a fleet of more than 20 spacecraft monitoring Earth and its systems.

Why we created our specific surface temperature record – known as GISTEMP – actually starts about 25 million miles away on the planet Venus. In the 1960s and 70s, researchers discovered that a thick atmosphere of clouds and carbon dioxide was responsible for Venus’ scorchingly hot temperatures.

The northern hemisphere of Venus, seen by the Magellan spacecraft. Venus is a burnt yellowish circle against the blackness of space. The planet’s surface has darker and yellow orange mottling and darker crater markings. Credit: NASA/JPL

Dr. James Hansen was a scientist at the Goddard Institute for Space Studies in New York, studying Venus. He realized that the greenhouse effect cooking Venus’ surface could happen on Earth, too, especially as human activities were pumping carbon dioxide into our atmosphere.

He started creating computer models to see what would happen to Earth’s climate as more carbon dioxide entered the atmosphere. As he did, he needed a way to check his models – a record of temperatures at Earth’s surface over time, to see if the planet was indeed warming along with increased atmospheric carbon. It was, and is, and NASA’s temperature record was born.

5. If last year was record hot, why wasn’t it very hot where I live?

The temperature record is a global average, so not everywhere on Earth experienced record heat. Local differences in weather patterns can influence individual locations to be hotter or colder than the globe overall, but when we average it out, 2023 was the hottest year.

Just because you didn’t feel record heat this year, doesn’t mean you didn’t experience the effects of a warming climate. 2023 saw a busy Atlantic hurricane season, low Arctic sea ice, raging wildfires in Canada, heat waves in the U.S. and Australia, and more.

Satellite image of smoke over the northeastern United States. The smoke is a light gray, cottony blanket creating an irregular shape over the center of the image. Behind it, the land surface is light browns and greens. Credit: NASA’s Earth Observatory

And these effects don’t stay in one place. For example, unusually hot and intense fires in Canada sent smoke swirling across the entire North American continent, triggering some of the worst air quality in decades in many American cities. Melting ice at Earth’s poles drives rising sea levels on coasts thousands of miles away.

Zoom in from a globe of Earth, showing warming temperatures in yellows, oranges, and reds. The zoom pushes in on the Arctic, which is primarily dark red, indicating the largest temperature anomalies throughout the region. Credit: NASA’s Scientific Visualization Studio/Katy Mersmann

6. Speaking of which, why is the Arctic – one of the coldest places on Earth – red on this temperature map?

Our global temperature record doesn’t actually track absolute temperatures. Instead, we track temperature anomalies, which are basically just deviations from the norm. Our baseline is an average of the temperatures from 1951-1980, and we compare how much Earth’s temperature has changed since then. 

Why focus on anomalies, rather than absolutes? Let’s say you want to track if apples these days are generally larger, smaller, or the same size as they were 20 years ago. In other words, you want to track the change over time.

Apples grown in Florida are generally larger than apples grown in Alaska. Like, in real life, how Floridian temperatures are generally much higher than Alaskan temperatures. So how do you track the change in apple sizes from apples grown all over the world while still accounting for their different baseline weights? 

By focusing on the difference within each area rather than the absolute weights. So in our map, the Arctic isn’t red because it’s hotter than Bermuda. It’s red because it’s gotten relatively much warmer than Bermuda has in the same time frame.

Want to learn more about climate change? Dig into the data at climate.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago
Guy Bluford, an African American man, floats near storage inside the Challenger spacecraft. He has one hand on a shiny gray bag with markings on it, and the other is nearly off-screen on the right. He wears a powder blue jumpsuit that has various zippers on it, as well as NASA, mission, and flag patches. He is looking directly at the camera while smiling. Credit: NASA

Guy Bluford Changed the Course of Space History

On Aug. 30, 1983, Guion Bluford, better known as Guy, became the first African American to fly to space. An accomplished jet pilot and aerospace engineer, Bluford became part of NASA’s 1978 astronaut class that included the first African American, the first Asian American, and the first women astronauts.

He and the other crew members of mission STS-8 were aboard the orbiter Challenger as it lifted off from Kennedy Space Center in Florida; it was the first nighttime launch and landing of the Space Shuttle program. While aboard, he and the other crew members deployed the Indian National Satellite (INSAT-1B), operated a Canadian-built robot arm, conducted experiments with live cell samples, and participated in studies measuring the effects of spaceflight on humans.

Guy Bluford chased his childhood dream of becoming an aerospace engineer, and in doing so, changed history and encouraged other Black astronauts to follow in his footsteps.

Make sure to follow us on Tumblr for your regular dose of space—and for milestones like this!


Tags
Loading...
End of content
No more pages to load
  • lathgerppawatzterp
    lathgerppawatzterp liked this · 1 year ago
  • ualelmimulvi
    ualelmimulvi liked this · 1 year ago
  • overn-donewit-em
    overn-donewit-em reblogged this · 1 year ago
  • overn-donewit-em
    overn-donewit-em liked this · 1 year ago
  • terrenceknowshehebrew
    terrenceknowshehebrew reblogged this · 1 year ago
  • terrenceknowshehebrew
    terrenceknowshehebrew liked this · 1 year ago
  • genius11rare
    genius11rare reblogged this · 2 years ago
  • weishenbwi
    weishenbwi liked this · 2 years ago
  • legendarycrownwolf
    legendarycrownwolf liked this · 2 years ago
  • freelyimhappy
    freelyimhappy liked this · 2 years ago
  • shynaturistaestheticalien
    shynaturistaestheticalien reblogged this · 2 years ago
  • shynaturistaestheticalien
    shynaturistaestheticalien liked this · 2 years ago
  • smolbeanghost
    smolbeanghost liked this · 2 years ago
  • stomiidae
    stomiidae reblogged this · 2 years ago
  • stomiidae
    stomiidae liked this · 2 years ago
  • dy1ng-pr4ct1c3
    dy1ng-pr4ct1c3 liked this · 2 years ago
  • shadow-creator
    shadow-creator liked this · 2 years ago
  • duple-man
    duple-man liked this · 2 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags