This January, we’re kicking off five new airborne Earth science expeditions aimed at studying our home planet from the land, sea and air. Here’s your chance to hear what it’s like from the cockpit!
Research pilot Dean “Gucci” Neeley will be taking your questions in an Answer Time session on Friday, January 10 from 12-1pm ET here on NASA’s Tumblr! Find out what it’s like to fly research aircraft that use the vantage point of space to increase our understanding of Earth, improve lives and safeguard our future! Make sure to ask your question now by visiting http://nasa.tumblr.com/ask!
Dean Neeley, retired U.S. Air Force officer and pilot, joined our Armstrong Flight Research Center in 2012 as a research pilot. Neeley flies a diverse array of highly modified airborne science, research and mission support aircraft such as the single-seat Lockheed ER-2 high-altitude science jet. The ER-2 collects information about Earth resources, celestial observations, atmospheric chemistry and dynamics and oceanic processes. Neeley has also flown the Gulfstream G-II mission support aircraft, which explores environmentally friendly aircraft concepts, the Stratospheric Observatory for Infrared Astronomy (SOFIA), which observes the solar system and beyond at mid- and far-infrared wavelengths, and the C-20A (G-III) science platform aircraft, which carries our Jet Propulsion Laboratory's synthetic aperture radar.
Dean’s call sign Gucci came from flying KC-10 “Gucci Boys” before being hired to fly U-2 aircraft. Some say he spends too much time/money on his hair, clothes, cars. 😂
He played drums in two rock bands in the 80s and 90s; Agent Orange and the Defoliants; The Mod Sky Gods.
He spent his years in the Air Force as a reconnaissance squadron commander, wing chief of safety, stealth fighter squadron director and bomber in multiple worldwide aerial combat campaigns.
Dean holds a Bachelor of Science in Aerospace Engineering and a Master of Aeronautical Science degree.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Part of the appeal of Thanksgiving is how easily we settle into the familiar: cherished foods, friends and family, and favorite activities like football, puzzles or board games. As anyone who has spent Thanksgiving with someone else’s traditions knows, those familiar things can take on seemingly unusual forms. That’s especially true when you’re 200 miles up in space.
Holidays in space weren’t very common early in the program, but as astronauts start the 20th year of continuous habitation they will also be celebrating the 20th consecutive Thanksgiving in orbit. As it turns out, everything’s the same, but different.
Early in the space program, astronauts didn’t have much choice about their meals. A turkey dinner with all the trimmings was as much a pipe dream in the early 1960s as space travel had been a few decades earlier. Food had to be able to stay fresh, or at least edible, from the time it was packed until the end of the mission, which might be several weeks. It couldn’t be bulky or heavy, but it had to contain all the nutrition an astronaut would need. It had to be easily contained, so crumbs or droplets wouldn’t escape the container and get into the spacecraft instrumentation. For the first flights, that meant a lot of food in tubes or in small bite-sized pieces.
Examples of food from the Mercury program
Maybe you rake leaves to start the day or straighten up the house for guests. Perhaps you’re the cook. Just like you, astronauts sometimes have to earn their Thanksgiving dinner. In 1974, two members of the Skylab 4 crew started their day with a six-and-a-half hour spacewalk, replacing film canisters mounted outside the spacecraft and deploying an experiment package.
After the spacewalk, the crew could at least “sit down” for a meal together that included food they didn’t have to eat directly from a bag, tube or pouch. In the spacecraft’s “ward room”, a station held three trays of food selected for the astronauts. The trays themselves kept the food warm.
A food tray similar to the ones astronauts used aboard Skylab, showing food, utensils and clean wipes. The tray itself warmed the food.
The ward room aboard Skylab showing the warming trays in use. The Skylab 4 crew ate Thanksgiving dinner there in 1974.
It can’t be all mashed potatoes and pie. There have to be some greens. NASA has that covered with VEGGIE, the ongoing experiment to raise food crops aboard the space station. Though the current crop won’t necessarily be on the Thanksgiving menu, astronauts have already harvested and eaten “space lettuce”. Researchers hope to be growing peppers aboard the space station in 2020.
Astronaut Kjell Lindgren enjoys lettuce grown and harvested aboard the International Space Station.
Space station crews have been able to watch football on Thanksgiving thanks to live feeds from Mission Control. Unfortunately their choices of activities can be limited by their location. That long walk around the neighborhood to shake off the turkey coma? Not happening.
Football in space. It’s a thing.
No matter how you plan, there’s a chance something’s going to go wrong, perhaps badly. It happened aboard the Space Shuttle on Thanksgiving 1989. Flight Director Wayne Hale tells of plumbing problem that left Commander Fred Gregory indisposed and vacuum-suctioned to a particular seat aboard the spacecraft.
This is not the seat from which the mission commander flies the Space Shuttle.
If you can’t get enough of space food, tune into this episode of “Houston, We Have a Podcast” and explore the delicious science of astronaut mealtime.
And whether you’re eating like a king or one of our astronauts currently living and working in space, we wish everybody a happy and safe Thanksgiving!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
You'll have to look quickly after sunset to catch Venus. And through binoculars or a telescope, you'll see Venus's phase change dramatically during September - from nearly half phase to a larger thinner crescent!
Jupiter, Saturn and Mars continue their brilliant appearances this month. Look southwest after sunset.
Use the summer constellations help you trace the Milky Way.
Sagittarius: where stars and some brighter clumps appear as steam from the teapot.
Aquila: where the Eagle's bright Star Altair, combined with Cygnus's Deneb, and Lyra's Vega mark the Summer Triangle.
Cassiopeia, the familiar "w"- shaped constellation completes the constellation trail through the Summer Milky Way. Binoculars will reveal double stars, clusters and nebulae.
Between September 12th and the 20th, watch the Moon pass from near Venus, above Jupiter, to the left of Saturn and finally above Mars!
Both Neptune and brighter Uranus can be spotted with some help from a telescope this month.
Look at about 1:00 a.m. local time or later in the southeastern sky. You can find Mercury just above Earth's eastern horizon shortly before sunrise. Use the Moon as your guide on September 7 and 8th.
And although there are no major meteor showers in September, cometary dust appears in another late summer sight, the morning Zodiacal light. Try looking for it in the east on moonless mornings very close to sunrise. To learn more about the Zodiacal light, watch "What's Up" from March 2018.
Watch the full What’s Up for September Video:
There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
@tinyscoop: What's the strangest experiment you've ever had to carry out up there?
During a recent close flyby of the gas giant Jupiter, our Juno spacecraft captured this stunning series of images showing swirling cloud patterns on the planet’s south pole. At first glance, the series might appear to be the same image repeated. But closer inspection reveals slight changes, which are most easily noticed by comparing the far-left image with the far-right image.
Directly, the images show Jupiter. But, through slight variations in the images, they indirectly capture the motion of the Juno spacecraft itself, once again swinging around a giant planet hundreds of millions of miles from Earth.
Juno captured this color-enhanced time-lapse sequence of images on Feb. 7 between 10:21 a.m. and 11:01 a.m. EST. At the time, the spacecraft was between 85,292 to 124,856 miles (137,264 to 200,937 kilometers) from the tops of the clouds of the planet with the images centered on latitudes from 84.1 to 75.5 degrees south.
Credit: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Over the next 14 months, our scientists will join a group of international researchers to explore a special region — Earth's northern polar cusp, one of just two places on our planet where particles from the Sun have direct access to our atmosphere.
Earth is surrounded by a giant magnetic bubble known as a magnetosphere, which protects our planet from the hot, electrically charged stream of particles from the Sun known as the solar wind. The northern and southern polar cusps are two holes in this protection — here, Earth's magnetic field lines funnel the solar wind downwards, concentrating its energy before injecting it into Earth’s atmosphere, where it mixes and collides with particles of Earthly origin.
The cusp is the only place where dayside auroras are found — a special version of northern and southern lights, visible when the Sun is out and formed by a different process than the more familiar nighttime aurora. That's what makes this region so interesting for scientists to study: The more we learn about auroras, the more we understand about the fundamental processes that drive near-Earth space — including those processes that disrupt our technology and endanger our astronauts.
Photo credit: Violaene Kaeser
The teams working on the Grand Challenge Initiative — Cusp will fly sounding rockets from two Norwegian rocket ranges that fall under the cusp for a short time each day. Sounding rockets are sub-orbital rockets that shoot up into space for a few minutes before falling back to Earth, giving them access to Earth's atmosphere between 30 and 800 miles above the surface. Cheaper and faster to develop than large satellite missions, sounding rockets often carry the latest scientific instruments on their first-ever flights, allowing for unmatched speed in the turnaround from design to implementation.
Each sounding rocket mission will study a different aspect of Earth's upper atmosphere and its connection to the Sun and particles in space. Here's a look at the nine missions coming up.
The cusp isn’t just the inroad into our atmosphere — it’s a two-way street. Counteracting the influx of particles from the Sun is a process called atmospheric escape, in which Earthly particles acquire enough energy to escape into space. Of all the particles that escape Earth’s atmosphere, there’s one that presents a particular mystery: oxygen.
At 16 times the mass of hydrogen, oxygen should be too heavy to escape Earth’s gravity. But scientists have found singly ionized oxygen in near-Earth space, which suggests that it came from Earth. The two VISIONS-2 rockets, led by NASA's Goddard Space Flight Center in Greenbelt, Maryland, will create maps of the oxygen outflow in the cusp, tracking where these heavy ions are and how they’re moving to provide a hint at how they escape.
If the cusp is like a funnel, then magnetic reconnection is what turns on the faucet. When the solar wind collides with Earth’s magnetic field, magnetic reconnection breaks open the previously closed magnetic field lines, allowing some solar wind particles to stream into Earth’s atmosphere through the cusp.
But researchers have noticed that the stream of particles coming in isn’t smooth: instead, it has abrupt breaks in it. Is magnetic reconnection turning on and off? Or is the solar wind shooting in from different locations? TRICE-2, led by the University of Iowa in Iowa City, will fly two separate rockets through a single magnetic field line in the cusp, to help distinguish these possibilities. If reconnection sputters on and off over time, then the two rockets should get quite different measurements, like noting how it feels to run your finger back and forth under a faucet that is being turned on and off. If instead reconnection happens consistently in multiple locations — like having ten different faucets, all running constantly — then the two rockets should have similar measurements whenever they pass through the same locations.
Magnetic reconnection is a process by which magnetic field lines explosively realign
The CAPER-2 rocket, led by Dartmouth College in Hanover, New Hampshire, will examine how fast-moving electrons — particles that can trigger aurora — get up to such high speeds. The team will zero in on the role that Alfvén waves, a special kind of low-frequency wave that oscillates along magnetic field lines, play in accelerating auroral electrons.
An illustration of rippling Alfvén waves
G-CHASER is made up entirely of student researchers from universities in the United States, Norway and Japan, many of whom are flying their experiments for the first time. The mission, led by the Colorado Space Grant Consortium at the University of Colorado Boulder, is a collaboration between seven different student-led missions, providing a unique opportunity for students to design, test and ultimately fly their experiment from start to finish. The students involved in the mission — mostly undergraduates but including some graduate teams — are responsible for all aspects of the mission, from developing the initial idea, to securing the funding, to making sure it passes all the tests before flight.
When the aurora shine, they don’t just emit light — they also release thermal and kinetic energy into the atmosphere. Some of this energy escapes back into space, but some of it stays with us. Which way this balance tips depends, in part, on the winds in the cusp. AZURE, led by Clemson University in South Carolina, will measure the vertical winds that swish energy and particles around within the auroral oval, the larger ring around the pole where the aurora are most common.
Later that year, the same team will launch the CHI mission, using a methodology similar to AZURE to measure the flow of charged and neutral gases inside the cusp. The goal is to better understand how particles, flowing in horizontal and vertical directions, interact with each other to produce heating and acceleration.
The cusp is a place where strange physics happens, producing some anomalies in the physical structure of the atmosphere that can make our technology go haywire. For satellites that pass through the cusp, density increases act like potholes, shaking up their orbits. Scientists don’t currently understand what causes these density increases, but they have some clues. C-REX-2, led by the University of Alaska Fairbanks, aims to figure out which variables — wind, temperature or ion velocity — are responsible.
Recent research has uncovered mysterious hot patches of turbulent plasma inside the auroral region that rain energetic particles towards Earth. GPS signals become garbled as they pass through these turbulent plasma patches, affecting so many of today’s technologies that depend on them. ICI-5, led by the University of Oslo, will launch into the cusp to take measurements from inside these hot patches. To measure their structure as several scales, the rocket will eject 12 daughter payloads in concentric squares which will achieve a variety of different separations.
Exploring the phenomenon of atmospheric escape, the Japan Aerospace Exploration Agency's SS-520-3 mission will fly 500 miles high over the cusp to take measurements of the electrostatic waves that heat ions up and get them moving fast enough to escape Earth.
For updates on the Grand Challenge Initiative and other sounding rocket flights, visit nasa.gov/soundingrockets or follow along with NASA Wallops and NASA heliophysics on Twitter and Facebook.
@NASA_Wallops | NASA's Wallops Flight Facility | @NASASun | NASA Sun Science
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Have you ever packed for a long trip with a friend and ran out of space in your suitcase? Maybe your friend was nice and let your spare items hitchhike a ride in their bag? The following science experiments are doing something similar on our Space Launch System rocket.
Our Space Launch System (SLS) will be the most powerful rocket we’ve ever built and will enable astronauts in the Orion spacecraft to travel deeper into the solar system. This advanced launch vehicle will launch astronauts to an asteroid and eventually to Mars, while opening new possibilities for other payloads including robotic scientific missions to places like Mars, Saturn and Jupiter.
The primary goal of SLS and the Orion spacecraft is to launch future crewed, deep space missions. That said, an added bonus of this powerful rocket is the extra science it can carry. On it’s first mission (known as Exploration Mission-1, EM-1) SLS will carry 13 CubeSats (small satellites, each the size of a large shoebox) on its first flight as secondary payloads. These small satellites will perform various in-space experiments. In a way, these 13 CubeSats are ‘space hitchhikers’, catching a ride to deep space where they can gather data valuable to future exploration missions.
How were these 13 experiments selected? Great question. They were selected through a series of announcements of flight opportunities, a public contest and negations with our international partners.
These secondary payloads have a vast array of functions, from taking pictures of asteroids, to using yeast to detect impacts of deep-space radiation. Each month we will highlight one of these experiments on Tumblr and talk about all the exciting science they will do. Just to give you an idea of what these shoebox-sized satellites will do, we’ll give you a preview:
1. NEA Scout
NEA Scout, stands for: Near-Earth Asteroid Scout. This CubeSat will investigate an asteroid, taking pictures and observe its position in space.
2. BioSentinel
BioSentinel will be the first time living organisms have traveled to deep space in more than 40 years. It will use yeast to detect, measure and compare the impact of deep-space radiation on living organisms over long durations in deep space.
3. Lunar Flashlight
This experiment will look for ice deposits and identify locations where resources may be extracted from the lunar surface. It will demonstrate the capability to scout for useful materials and resources from lunar orbit.
4. Skyfire
Lockheed Martin’s Skyfire will perform a lunar flyby, collecting data to address both Moon and Mars Strategic Knowledge Gaps, or gaps in information required to reduce risk, increase effectiveness and improve the design of robotic and human space exploration missions, for surface characterization, remote sensing and site selection.
5. Lunar IceCube
Morehead State University’s Lunar IceCube will look for water in ice, liquid and vapor forms from a very low orbit of only 62 miles above the surface of the moon. The ability to search for useful resources can potentially help astronauts manufacture fuel and necessities to sustain a crew.
6. CuSP
The CubeSat mission to study Solar Particles, or CuSP, will be the first protype of an interplanetary CubeSat space weather station. It will observe space weather events hours before they reach Earth.
7. Luna-H-Map
Lunar Polar Hydrogen Mapper (LunaH) will enter a polar orbit around the moon with a low altitude. From there, it will produce maps of near-surface hydrogen.
8, 9, 10. Three Tournament Payloads
Three of the payloads riding along on this journey will be the winners of the Ground Tournaments portion of our CubeQuest Challenge. This challenge is designed to foster innovation in small spacecraft propulsion and communications techniques. Learn more about this challenge HERE.
11, 12, 13. International Partners
The remaining three payloads are reserved for international partners, and will be announced at a later time.
To stay updated on these experiments, visit: http://www.nasa.gov/launching-science-and-technology.html
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
This afternoon, President Obama spoke by phone with astronaut Scott Kelly to welcome him back to Earth from his record-breaking yearlong mission on the International Space Station.
President Obama, above, is seen talking on the phone with Scott Kelly in the Oval Office on March 2, 2016. (Official White House Photo by Pete Souza)
The President thanked Kelly for his service, for sharing his journey with people across the globe through social media, for his participation in important research about what it will take for us to make long journeys in space, and for inspiring a new generation of young people to pursue studies and careers in science, technology, engineering, and mathematics.
The President also noted that Kelly’s year in space would provide critical data to researchers trying to understand how to keep astronauts healthy during long space voyages and fulfill the President’s vision of putting American astronauts on Mars in the 2030s.
Thanks to Kelly’s work, in addition to that of everyone at NASA and in the U.S. space industry, the President believes the United States will be successful in that journey to Mars and will continue to lead and inspire the world in space exploration.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Let our apps lead you on a journey of exploration across the Earth, through the solar system and beyond. Here are some to download today:
1. Actually, it is rocket science Rocket Science 101 let’s you select your favorite mission and build a rocket to take you to destinations near and far. Learn how launch vehicles are configured and how their boosters and other component parts work together to successfully launch spacecraft.
iOS Google Play
2. Go to Mars (sort of) Be A Martian lets you experience Mars as if you were there! Join an international community of explorers. See the latest images of the Red Planet! Learn about Mars, ask questions, and check out behind-the-scenes videos of the missions.
iOS Google Play
3. All the Earth science With Earth Now, watch Earth science satellites in real time as they gather data about our home planet. Get real-time images of the places we call home. Check out global climate data, including surface air temperature, carbon dioxide, carbon monoxide, ozone, and sea level variations.
iOS Google Play
4. Pretty pictures Discover stunning images and videos of our planet Earth, space, stars and planets with Space Images. Find your favorite galaxies and explore our celestial neighborhood.
iOS Google Play
5. Ch-ch-ch-changes Images of Change give you a close-up view of our ever-changing planet. Inside this app, before and after image pairs show areas that have been subject to natural disasters or seen significant change over time.
iOS
Last but not least: NASA on the go With our official NASA app, explore and discover the latest images, videos, mission information, news, feature stories, tweets, NASA TV and featured content from across America’s space program.
iOS Google Play
Our apps let you explore our latest images, videos,and mission news.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
A quarter-century ago, the Solar and Heliospheric Observatory (SOHO) launched to space. Its 25 years of data have changed the way we think about the Sun — illuminating everything from the Sun’s inner workings to the constant changes in its outermost atmosphere.
SOHO — a joint mission of the European Space Agency and NASA — carries 12 instruments to study different aspects of the Sun. One of the gamechangers was SOHO’s coronagraph, a type of instrument that uses a solid disk to block out the bright face of the Sun and reveal the relatively faint outer atmosphere, the corona. With SOHO’s coronagraph, scientists could image giant eruptions of solar material and magnetic fields, called coronal mass ejections, or CMEs. SOHO’s images revealed shape and structure of CMEs in breathtaking detail.
These solar storms can impact robotic spacecraft in their path, or — when intense and aimed at Earth — threaten astronauts on spacewalks and even disrupt power grids on the ground. SOHO is particularly useful in viewing Earth-bound storms, called halo CMEs — so called because when a CME barrels toward us on Earth, it appears circular, surrounding the Sun, much like watching a balloon inflate by looking down on it.
Before SOHO, the scientific community debated whether or not it was even possible to witness a CME coming straight toward us. Today, SOHO images are the backbone of space weather prediction models, regularly used in forecasting the impacts of space weather events traveling toward Earth.
Beyond the day-to-day monitoring of space weather, SOHO has been able to provide insight about our dynamic Sun on longer timescales as well. With 25 years under its belt, SOHO has observed a full magnetic cycle — when the Sun’s magnetic poles switch places and then flip back again, a process that takes about 22 years in total. This trove of data has led to revolutions in solar science: from revelations about the behavior of the solar core to new insight into space weather events that explode from the Sun and travel throughout the solar system.
Data from SOHO, sonified by the Stanford Experimental Physics Lab, captures the Sun’s natural vibrations and provides scientists with a concrete representation of its dynamic movements.
The legacy of SOHO’s instruments — such as the extreme ultraviolet imager, the first of its kind to fly in orbit — also paved the way for the next generation of NASA solar satellites, like the Solar Dynamics Observatory and STEREO. Even with these newer instruments now in orbit, SOHO’s data remains an invaluable part of solar science, producing nearly 200 scientific papers every year.
Relatively early in its mission, SOHO had a brush with catastrophe. During a routine calibration procedure in June 1998, the operations team lost contact with the spacecraft. With the help of a radio telescope in Arecibo, the team eventually located SOHO and brought it back online by November of that year. But luck only held out so long: Complications from the near loss emerged just weeks later, when all three gyroscopes — which help the spacecraft point in the right direction — failed. The spacecraft was no longer stabilized. Undaunted, the team’s software engineers developed a new program that would stabilize the spacecraft without the gyroscopes. SOHO resumed normal operations in February 1999, becoming the first spacecraft of its kind to function without gyroscopes.
SOHO’s coronagraph have also helped the Sun-studying mission become the greatest comet finder of all time. The mission’s data has revealed more than 4,000 comets to date, many of which were found by citizen scientists. SOHO’s online data during the early days of the mission made it possible for anyone to carefully scrutinize a image and potentially spot a comet heading toward the Sun. Amateur astronomers from across the globe joined the hunt and began sending their findings to the SOHO team. To ease the burden on their inboxes, the team created the SOHO Sungrazer Project, where citizen scientists could share their findings.
Keep up with the latest SOHO findings at nasa.gov/soho, and follow along with @NASASun on Twitter and facebook.com/NASASunScience.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
After 20 years in space, the Cassini spacecraft is running out of fuel. In 2010, Cassini began a seven-year mission extension in which the plan was to expend all of the spacecraft’s propellant exploring Saturn and its moons. This led to the Grand Finale and ends with a plunge into the planet’s atmosphere at 6:32 a.m. EDT on Friday, Sept. 15.
The spacecraft will ram through Saturn’s atmosphere at four times the speed of a re-entry vehicle entering Earth’s atmosphere, and Cassini has no heat shield. So temperatures around the spacecraft will increase by 30-to-100 times per minute, and every component of the spacecraft will disintegrate over the next couple of minutes…
Cassini’s gold-colored multi-layer insulation blankets will char and break apart, and then the spacecraft's carbon fiber epoxy structures, such as the 11-foot (3-meter) wide high-gain antenna and the 30-foot (11-meter) long magnetometer boom, will weaken and break apart. Components mounted on the outside of the central body of the spacecraft will then break apart, followed by the leading face of the spacecraft itself.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts