What Was The Most Fun You Had In Mission Control?

What was the most fun you had in Mission Control?

More Posts from Nasa and Others

3 years ago
Our Universe Is FULL Of Strange And Surprising Things.

Our universe is FULL of strange and surprising things.

And luckily, our Hubble Space Telescope is there to be our window to the unimaginable! Hubble recently ran into an issue with its payload computer which controls and coordinates science instruments onboard the spacecraft. On July 16, teams successfully switched to backup hardware to compensate for the problem! A day later, the telescope resumed normal science operations. To celebrate, we’re taking you back to 2016 when our dear Hubble captured perhaps one of the most intriguing objects in our Milky Way galaxy: a massive star trapped inside a bubble! The star inside this Bubble Nebula burns a million times brighter than our Sun and produces powerful gaseous outflows that howl at more than four million miles per hour. Based on the rate the star is expending energy, scientists estimate in 10 to 20 million years it will explode as a supernova. And the bubble will succumb to a common fate: It’ll pop.


Tags
6 years ago

Five Facts About the Kepler Space Telescope That Will Blow You Away!

Five Facts About The Kepler Space Telescope That Will Blow You Away!

Ten years ago, on March 6, 2009, a rocket lifted off a launch pad at Cape Canaveral Air Force Station in Florida. It carried a passenger that would revolutionize our understanding of our place in the cosmos--NASA’s first planet hunter, the Kepler space telescope. The spacecraft spent more than nine years in orbit around the Sun, collecting an unprecedented dataset for science that revealed our galaxy is teeming with planets. It found planets that are in some ways similar to Earth, raising the prospects for life elsewhere in the cosmos, and stunned the world with many other first-of-a-kind discoveries. Here are five facts about the Kepler space telescope that will blow you away:

Kepler observed more than a half million stars looking for planets beyond our solar system.

Five Facts About The Kepler Space Telescope That Will Blow You Away!

It discovered more than 2,600 new worlds…

Five Facts About The Kepler Space Telescope That Will Blow You Away!

…many of which could be promising places for life.

Five Facts About The Kepler Space Telescope That Will Blow You Away!

Kepler’s survey revealed there are more planets than stars in our galaxy.

Five Facts About The Kepler Space Telescope That Will Blow You Away!

The spacecraft is now drifting around the Sun more than 94 million miles away from Earth in a safe orbit.

Five Facts About The Kepler Space Telescope That Will Blow You Away!

NASA retired the Kepler spacecraft in 2018. But to this day, researchers continue to mine its archive of data, uncovering new worlds.

*All images are artist illustrations. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

A Tiny Satellite Studies Stormy Layers

image

The gif above shows data taken by an experimental weather satellite of Hurricane Dorian on September 3, 2019. TEMPEST-D, a NASA CubeSat, reveals rain bands in four layers of the storm by taking the data in four different radio frequencies. The multiple vertical layers show where the most warm, wet air within the hurricane is rising high into the atmosphere. Pink, red and yellow show the areas of heaviest rainfall, while the least intense areas of rainfall are in green and blue.

How does an Earth satellite the size of a cereal box help NASA monitor storms? 

image

The goal of the TEMPEST-D (Temporal Experiment for Storms and Tropical Systems Demonstration) mission is to demonstrate the performance of a CubeSat designed to study precipitation events on a global scale.

If TEMPEST-D can successfully track storms like Dorian, the technology demonstration could lead to a train of small satellites that work together to track storms around the world. By measuring the evolution of clouds from the moment of the start of precipitation, a TEMPEST constellation mission, collecting multiple data points over short periods of time, would improve our understanding of cloud processes and help to clear up one of the largest sources of uncertainty in climate models. Knowledge of clouds, cloud processes and precipitation is essential to our understanding of climate change.

What is a CubeSat, anyway? And what’s the U for?

CubeSats are small, modular, customizable vessels for satellites. They come in single units a little larger than a rubix cube - 10cmx10cmx10cm - that can be stacked in multiple different configurations. One CubeSat is 1U. A CubeSat like TEMPEST-D, which is a 6U, has, you guessed it, six CubeSat units in it.

image

Pictured above is a full-size mockup of MarCO, a 6U CubeSat that recently went to Mars with the Insight mission. They really are about the size of a cereal box!

We are using CubeSats to test new technologies and push the boundaries of Earth Science in ways never before imagined. CubeSats are much less expensive to produce than traditional satellites; in multiples they could improve our global storm coverage and forecasting data.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
1 year ago
Artist’s concept showing the seven planets discovered orbiting a Sun-like star. The system, called Kepler-385, was identified using data from NASA’s Kepler mission. Credit: NASA/Daniel Rutter

Hot New Planetary System Just Dropped.

We hope you like your planetary systems extra spicy. 🔥

A new system of seven sizzling planets has been discovered using data from our retired Kepler space telescope.

Named Kepler-385, it’s part of a new catalog of planet candidates and multi-planet systems discovered using Kepler.

The discovery helps illustrate that multi-planetary systems have more circular orbits around the host star than systems with only one or two planets.

Our Kepler mission is responsible for the discovery of the most known exoplanets to date. The space telescope’s observations ended in 2018, but its data continues to paint a more detailed picture of our galaxy today.

Here are a few more things to know about Kepler-385:

Artist’s concept of Kepler 385, a seven-planet system with a Sun-like star to the left of the image and the planets varying in color and size are arranged in a straight line from inner-most to outer-most going from left to right. Credit: NASA/Daniel Rutter

All seven planets are between the size of Earth and Neptune.

Artist’s concept showing two of the seven planets discovered orbiting a Sun-like star. Credit: NASA/Daniel Rutter

Its star is 10% larger and 5% hotter than our Sun.

This artist concept shows NASA's planet-hunting Kepler spacecraft among the stars. The spacecraft looks like a golden cylinder with one end cut diagonally. Silver metal surrounds the cylinder, with solar panels all along one portion. Credit: NASA/ESA/CSA/STScI

This system is one of over 700 that Kepler’s data has revealed.

The planets’ orbits have been represented in sound.

Now that you’ve heard a little about this planetary system, get acquainted with more exoplanets and why we want to explore them.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
5 years ago
To All Those Looking To The Stars, Believe In Yourself – We Do. ❤️ ⁣ ⁣ From Auto Mechanic To
To All Those Looking To The Stars, Believe In Yourself – We Do. ❤️ ⁣ ⁣ From Auto Mechanic To
To All Those Looking To The Stars, Believe In Yourself – We Do. ❤️ ⁣ ⁣ From Auto Mechanic To
To All Those Looking To The Stars, Believe In Yourself – We Do. ❤️ ⁣ ⁣ From Auto Mechanic To

To all those looking to the stars, believe in yourself – we do. ❤️ ⁣ ⁣ From auto mechanic to geologist - everyone's story is different. Our NASA astronauts come from all walks of life, with backgrounds as unique as the individuals themselves. ⁣ ⁣ Get to know their stories and even apply to #BeAnAstronaut, HERE. Applications close March 31. ⁣ ⁣

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

From an astronauts perspective, what is your opinion on movies like Interstellar and Gravity?


Tags
8 years ago

Juno: Inside the Spacecraft

image

Our Juno spacecraft was carefully designed to meet the tough challenges in flying a mission to Jupiter: weak sunlight, extreme temperatures and deadly radiation. Lets take a closer look at Juno:

It Rotates!

image

Roughly the size of an NBA basketball court, Juno is a spinning spacecraft. Cartwheeling through space makes the spacecraft’s pointing extremely stable and easy to control. While in orbit at Jupiter, the spinning spacecraft sweeps the fields of view of its instruments through space once for each rotation. At three rotations per minute, the instruments’ fields of view sweep across Jupiter about 400 times in the two hours it takes to fly from pole to pole.

It Uses the Power of the Sun

image

Jupiter’s orbit is five times farther from the sun than Earth’s, so the giant planet receives 25 times less sunlight than Earth. Juno will be the first solar-powered spacecraft we've designed to operate at such a great distance from the sun. Because of this, the surface area of the solar panels required to generate adequate power is quite large.

image

Three solar panels extend outward from Juno’s hexagonal body, giving the overall spacecraft a span of about 66 feet. Juno benefits from advances in solar cell design with modern cells that are 50% more efficient and radiation tolerant than silicon cells available for space missions 20 years ago. Luckily, the mission’s power needs are modest, with science instruments requiring full power for only about six out of each 11-day orbit.

It Has a Protective Radiation Vault

image

Juno will avoid Jupiter’s highest radiation regions by approaching over the north, dropping to an altitude below the planet’s radiation belts, and then exiting over the south. To protect sensitive spacecraft electronics, Juno will carry the first radiation shielded electronics vault, a critical feature for enabling sustained exploration in such a heavy radiation environment.

Juno Science Payload:

Gravity Science and Magnetometers – Will study Jupiter’s deep structure by mapping the planet’s gravity field and magnetic field.

image

Microwave Radiometer – Will probe Jupiter’s deep atmosphere and measure how much water (and hence oxygen) is there.

image

JEDI, JADE and Waves – These instruments will work to sample electric fields, plasma waves and particles around Jupiter to determine how the magnetic field is connected to the atmosphere, and especially the auroras (northern and southern lights).

JADE and JEDI

image

Waves

image

UVS and JIRAM – Using ultraviolet and infrared cameras, these instruments will take images of the atmosphere and auroras, including chemical fingerprints of the gases present.

UVS

image

JIRAM

image

JunoCam – Take spectacular close-up, color images.

image

Follow our Juno mission on the web, Facebook, Twitter, YouTube and Tumblr.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
2 months ago
Overhead view of the international Space Station orbiting above Earth as day turns to night. Credit: NASA

Spinoffs: Space Station Innovations in Your Cart (and Heart!)

You might think NASA technology is just spaceships and telescopes, but did you know the camera in your cell phone is, too? It’s one of many NASA innovations now found everywhere on Earth.

The International Space Station has had crew living on it for 25 years straight. In that time, the space station has enabled a tremendous amount of research, helping NASA and scientists better understand long-term living in space – but it’s not just knowledge coming back down to Earth! Technologies developed for the space station and experiments conducted aboard the orbiting lab also benefit people on the planet below. Here are a few of these inventions, or spinoffs, you can find in your everyday life.

A woman applies sunscreen to a young girl’s face at the edge of a swimming pool. Credit: Getty Images

A Sunscreen That Blocks Radiation in Space – and on Your Face

After surviving for 18 months outside the International Space Station, an extremely hardy organism is now improving sunscreens and face cream products from a cosmetics company, which licensed use of the organism from NASA’s Jet Propulsion Laboratory.

Astronaut Sunita Williams flexes her arm muscles as she uses a resistive exercise device on the International Space Station. She wears what looks like football shoulder pads, which have cables connecting them to the device. Credit: NASA
A man uses the Bowflex Revolution exercise machine. He is holding a strap attached to a cable. Credit: Bowflex

Build Muscle With or Without Gravity

Muscles atrophy quickly in space, so when astronauts began long stays on the International Space Station, they needed some specialized exercise equipment. A resistance mechanism made of a coiled metal spring formed the basis of the first way for astronauts to “lift weights” in space. Soon after, that same design became the heart of compact home gym equipment.

Fresh chile peppers are pictured growing inside the International Space Station's Advanced Plant Habitat shortly before being harvested. Credit: NASA

Fresh Greens Every Day of the Year

The need to grow fresh food in space pushed NASA to develop indoor agriculture techniques. Thanks to the agency’s research, private companies are building on NASA’s vertical farm structure, plant-growth “recipes,” and environmental-control data to create indoor farms, resulting in higher crop yields and better-quality produce while conserving water and energy and eliminating the need for pesticides.

NASA astronaut Megan McArthur installs a new ADSEP-2 (Advanced Space Experiment Processor-2), which looks like a metal rectangular box, containing ADSEP-UMAMI samples inside the Kibo laboratory module aboard the International Space Station. Credit: NASA

Cultivating Hearts and Knees in Space

Gravity is a significant obstacle to bioprinting cells and growing human tissue on Earth because heavier components settle to the bottoms of petri dishes. In the absence of gravity, each cell layer stays in place, which is how it’s possible to grow heart and knee tissue on the space station. The same principle also allows mixing of complex pharmaceuticals on orbit.

Three rows of solar panels stand at an angle in a grassy field at NASA's Kennedy Space Center in Florida. The sky is bright blue. Credit: NASA/Frank Michaux

Storing Oodles of Energy

NASA chose nickel-hydrogen batteries to power the Hubble Space Telescope and the International Space Station because the technology is safe, reliable in extreme temperatures, and long-lived. NASA’s improvements brought down the cost of the technology, which is now used by large-scale utilities and renewable power plants that need to store energy generated by intermittent sources.

You can read about many more products sourced from the ISS on spinoff.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
4 years ago

Orion’s top images of 2020

The Orion program showed its resilience this year during an unprecedented time, racking up several success stories building and testing the spacecraft in preparation for upcoming Artemis missions to the Moon. From hot fire and structural testing, to crew and service module assembly activities, progress on Orion brought the agency closer to sending the first woman and next man to the Moon by 2024, and sustainable lunar exploration by 2028.

Orion’s Top Images Of 2020

Ensuring crew safety, a hot fire test was conducted on the Northrop Grumman-built attitude control motor – which provides steering for Orion’s  launch abort system in the event of an emergency during ascent – at the company’s facility in Elkton, Maryland. The 30-second hot fire was the third and final test to qualify the motor for human missions, beginning with Artemis II.

Orion’s Top Images Of 2020

During a three-month testing campaign at NASA’s Plum Brook Station in Sandusky, Ohio, the Orion spacecraft was subjected to the extreme temperatures and electromagnetic environment it will experience on Artemis I – Orion’s first uncrewed test flight to the Moon atop the agency’s  Space Launch System (SLS) rocket. Testing wrapped up early and the vehicle was readied for its journey back to NASA’s Kennedy Space Center aboard the agency’s one-of-a-kind Super Guppy.

Orion’s Top Images Of 2020

Before NASA astronauts fly Orion on missions to the Moon and back, testing is necessary to verify the spacecraft’s ability to withstand the stresses of launch, climb to orbit, the harsh conditions of deep space transit, and return to Earth. Engineers from NASA and its prime contractor, Lockheed Martin, completed testing on Orion’s Structural Test Article (STA) for Artemis I. The STA is structurally identical to Orion’s main spacecraft elements: the crew module, service module and launch abort system.

Orion’s Top Images Of 2020

The first element machined for the Artemis III Orion crew module – a cone panel with openings for windows, which will provide a spectacular view – was designed by Lockheed Martin, and manufactured by AMRO Fabricating Corp., of South El Monte, California. The completed panel made its way to NASA’s Michoud Assembly Facility near New Orleans, where engineers will weld it with other elements as part of Orion’s pressure vessel.

Orion’s Top Images Of 2020

Orion’s European Service Module primary structure for the Artemis for the Artemis III mission arrived at the Airbus facility in Bremen, Germany, from its Thales Alenia Space manufacturing site in Turin, Italy. The service module will be equipped with components to power Orion and provide life support to astronauts – such as air, water, heat and cooling – during the mission that will land the first woman and next man on the Moon.

Orion’s Top Images Of 2020

Three spacecraft adapter jettison fairing panels were fitted onto Orion’s service module inside the Neil Armstrong Operations and Checkout Building at Kennedy. Once secured, the panels encapsulate the service module to protect it from harsh environments such as heat, wind, and acoustics as the spacecraft is propelled out of Earth’s atmosphere atop the SLS rocket during NASA’s Artemis I mission.

1 year ago
This image shows an image of Earth from space. It was taken by the crew of the final Apollo mission as the crew made its way to the Moon. The Earth is round. At the bottom, while clouds surround the continent of Antarctica. As you move up, the landmass appears in the land is brown in color. The ocean appears in dark blue colors. Credit: NASA

Ways NASA Studies the Ocean

We live on a water planet. The ocean covers a huge part of the Earth's surface – earning it the name Blue Marble.

The ocean is one of Earth’s largest ecosystems and helps moderate Earth’s climate. NASA scientists spend a lot of time studying the ocean and how it is changing as Earth’s climate changes.

In the last few years, NASA has launched an array of missions dedicated to studying this precious part of our planet, with more to come. For World Oceans Month, which starts in June, here are new ways NASA studies the ocean.

1. Seeing the colors of the ocean 🎨

A new NASA mission called PACE will see Earth’s oceans in more color than ever before. The color of the ocean is determined by the interaction of sunlight with substances or particles present in seawater.

Scheduled to launch in 2024, PACE will help scientists assess ocean health by measuring the distribution of phytoplankton, tiny plants and algae that sustain the marine food web. PACE will also continue measuring key atmospheric variables associated with air quality and Earth's climate.

This moving image shows the SWOT  satellite moving over a 75-mile swath of Earth. The background is black. The satellite moves from left to right in  the upper part of if the illustration. The satellite is a gold cylinder with blue solar panels and a T-shaped piece extending from it. As it moves in a straight line from to back it beams down pink and green light to show how it collects measurements. Below the beams, a rainbow light appears to show data collection. At the bottom of the moving image, a square image of Earth appears, circling. The square contains clouds and blue water. In the middle, a landmass is covered in dark green patches. Credit: NASA/JPL-Caltech

2. Surveying surface water around the globe 💧

The SWOT satellite, launched in late 2022, is studying Earth’s freshwater – from oceans and coasts to rivers, lakes and more – to create the first global survey of Earth’s surface water.

SWOT is able to measure the elevation of water, observing how major bodies of water are changing and detecting ocean features. The data SWOT collects will help scientists assess water resources, track regional sea level changes, monitor changing coastlines, and observe small ocean currents and eddies.

This illustration shows ocean currents around North and South America from space. The shape is a half-circle with a black background. To the left of the image, North and South American are a light brown color. North America is tilted to the left while South America is seen partially at the bottom center. From left to right, white circles cover earth showing the motion of a current. Under these white swirls, Earth’s Atlantic Ocean is signified in a light blue color. Credit: NASA

3. Setting sail to understand interactions between the ocean and atmosphere 🚢

With research aircraft, a research ship, and autonomous ocean instruments like gliders, NASA’s S-MODE mission is setting sail to study Earth’s oceans up close. Their goal? To understand ocean whirlpools, eddies and currents.

These swirling ocean features drive the give-and-take of nutrients and energy between the ocean and atmosphere and, ultimately, help shape Earth’s climate.

This image, taken from the HawkEye instrument, shows Baltimore and the Eastern Shore. The land is colored light brown and green. In the middle of the image, blue and green colored water shows the Atlantic Ocean to the right. The water comes in between the land, branching out to form the Chesapeake Bay itself. Credit: NASA; University of North Carolina, Wilmington; Cloudland Instruments; AAC-Clyde Space

4. Building ocean satellites the size of a shoebox 📦

NASA’s HawkEye instrument collects ocean color data and captures gorgeous images of Earth from its orbit just over 355 miles (575 kilometers) above Earth’s surface. It’s also aboard a tiny satellite measuring just 10cm x 10 cm x 30 cm – about the size of a shoebox!

​​This image shows dense blooming of phytoplankton. The plankton are represented in light and dark shades of green surrounding the island Svenskøya in the Svalbard archipelago located in the center of the image. The landmass is in the center of the image, colored in a light gray. Surrounding it is the plankton and blue water. Credit: NASA

5. Designing new missions to study Earth’s oceans! 🌊

NASA is currently designing a new space-based instrument called GLIMR that will help scientists observe and monitor oceans throughout the Gulf of Mexico, the southeastern U.S. coastline and the Amazon River plume that stretches to the Atlantic Ocean. GLIMR will also provide important information about oil spills, harmful algae blooms, water quality and more to local agencies.

This illustration shows animated movement of the Sentinel-6 Michael Freilich satellite. At the bottom of the image, the Earth appears moving in a circular pattern. The planet is depicted with brown and green landmasses with water surrounding it. Above Earth, the satellite appears moving from left to right. The satellite is shaped in a triangle, colored in purple and gold. It beams down circular beams which simulate data collection. Credit: NASA/JPL

6. Taking the ocean to new heights ⬆️

The U.S.-European Sentinel-6 Michael Freilich satellite is helping researchers measure the height of the ocean - a key component in understanding how Earth’s climate is changing.

This mission, which launched in 2020, has a serious job to do. It’s not only helping meteorologists improve their weather forecasts, but it’s helping researchers understand how climate change is changing Earth’s coastlines in real time.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
Loading...
End of content
No more pages to load
  • watch
    watch reblogged this · 1 year ago
  • convincemeofhate
    convincemeofhate liked this · 5 years ago
  • unknown-uwoit
    unknown-uwoit liked this · 5 years ago
  • museguy96
    museguy96 liked this · 5 years ago
  • moving-blogs-dm-for-new-one
    moving-blogs-dm-for-new-one liked this · 5 years ago
  • idonthaveagoodnametoputhere
    idonthaveagoodnametoputhere reblogged this · 5 years ago
  • filbertsbestfriend
    filbertsbestfriend reblogged this · 5 years ago
  • mybendystraw
    mybendystraw liked this · 5 years ago
  • bad-angela
    bad-angela reblogged this · 5 years ago
  • skcirthinq
    skcirthinq reblogged this · 5 years ago
  • insertanonymousname
    insertanonymousname liked this · 5 years ago
  • imamwolf
    imamwolf liked this · 5 years ago
  • coffea-chan
    coffea-chan liked this · 5 years ago
  • trompito005
    trompito005 liked this · 5 years ago
  • lennoxs
    lennoxs liked this · 5 years ago
  • lucmarcou
    lucmarcou liked this · 5 years ago
  • ladyhinata
    ladyhinata reblogged this · 5 years ago
  • adt-space
    adt-space reblogged this · 5 years ago
  • fellowitch
    fellowitch liked this · 5 years ago
  • passionatedisdain
    passionatedisdain liked this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags