Five Reasons You Wouldn’t Want To Live Near A Black Hole

Five Reasons You Wouldn’t Want to Live Near a Black Hole

Black holes are mystifying yet terrifying cosmic phenomena. Unfortunately, people have a lot of ideas about them that are more science fiction than science. Black holes are not cosmic vacuum cleaners, sucking up anything and everything nearby. But there are a few ways Hollywood has vastly underestimated how absolutely horrid black holes really are.

Black holes are superdense objects with a gravitational pull so strong that not even light can escape them. Scientists have overwhelming evidence for two types of black holes, stellar and supermassive, and see hints of an in-between size that’s more elusive. A black hole’s type depends on its mass (a stellar black hole is five to 30 times the mass of the Sun, while a supermassive black hole is 100,000 to billions of times the mass of the Sun), and can determine where we’re most likely to find them and how they formed. 

image

Let's focus on supermassive black holes for now, shall we? Supermassive black holes exist in the centers of most large galaxies. Some examples are Sagittarius A* (that’s pronounced “A-star”) at the center of our Milky Way and the black hole at the center of galaxy Messier 87, which became famous earlier this year when the Event Horizon Telescope released an image of it. As the name suggests, these black holes are — well — supermassive. Why are they so enormous? Scientists suspect it has something to do with their locations in the centers of galaxies. With so many stars and lots of gas there, they can grow large rapidly (astronomically speaking).

You may have seen a portrayal of planets around supermassive black holes in the movies. But what would the conditions on those worlds actually look like? What kinds of problems might you face?

image

1. 100% chance for cosmic winds

“Space weather” describes the changing conditions in space caused by stellar activity. Solar eruptions produce intense radiation and clouds of charged particles that sweep through our planetary system and can affect technology we rely on, damaging satellites and even causing electrical blackouts. Thankfully, Earth’s atmosphere and magnetic field protect us from most of the storms produced by the Sun.

image

Now, space weather near a black hole would be interesting if the black hole is consuming matter. It could be millions — perhaps even billions — of times stronger than the Sun’s, depending on how close the planet is. Even though black holes don’t emit light themselves, their surroundings can be very bright and hot. Accretion disks — swirling clouds of matter falling toward black holes — emit huge amounts of radiation and particles and form incredible magnetic fields. In them, you’d also have to worry about debris traveling at nearly the speed of light, slamming into your planet. It’d be hard to avoid getting hit by anything coming at you that fast!

2. Hello? Can you still hear us?

We launched the Parker Solar Probe to learn more about the Sun. If you lived on a world around a supermassive black hole, you'd probably want to study it too. But it would be a lot more challenging!

You’d have to launch satellites that could withstand the extreme space weather. And then there would be major communication issues — a time-delay in messages sent between the spacecraft and your planet.

image

On Earth we experience time gaps when talking to missions on Mars. It takes up to 22 minutes to hear back from them. Around a black hole, that effect would be much more extreme. Objects closer to the black hole would experience time differently, making things seem slower than they actually are. That means the delay in communications with a satellite launched toward a black hole would become longer and longer as it got closer and closer. By the time you hear back from your satellite, it might be gone!

3. Can someone turn off the lights?

Supermassive black holes at the centers of galaxies typically have a lot of nearby stars. In fact, if you were to live on a planet near the center of the Milky Way, there would be so many stars you could read at night without using electricity.

image

That sounds kind of cool, right? Maybe — unless your planet is actually orbiting the supermassive black hole. Being that close, the light from all those stars would be concentrated and amplified due to the extreme gravity around the black hole, making the light stronger and even causing scary beams of strong radiation. You would want to have a bucket of sunscreen ready to apply often — or simply never leave your home.

4. Did someone leave the oven on?

And not only would it be really bright, it would also be really toasty, thanks to radioactive heating! Those stars hanging around the black hole emit not just light but ghostly particles called neutrinos— speedy, tiny particles that weigh almost nothing and rarely interact with anything. While neutrinos coming from our Sun aren't enough to harm us, the volume that would be coming from the cluster of stars near a black hole would be enough to radioactively heat up whatever they slam into.

image

The planet would absorb neutrinos, which would, in turn, warm up the core of the planet eventually making it unbearably hot. It would be like living in a nuclear reactor. At least you’d be warm and could toss your winter coats?

5. You are what you eat?

If your planet got too close to a black hole, you’d likely face a gruesome fate. The forces from the black hole's gravity stretch matter, essentially turning it into a noodle. We call this spaghettification. (Beware the cosmic pasta-making machine?) Imagine yourself falling feet-first toward a black hole. Spaghettification happens because the gravity at your feet is sooooo much stronger than that at your head that you start to stretch out!

image

Maybe you wish you could simply drift around a black hole in a spacecraft and enjoy the view, or travel through one like science fiction depicts. Sadly, even if we had the means to get close to a black hole, it clearly wouldn’t be that simple or even very enjoyable.

Watch Dr. Jeremy Schnittman’s talk on the science behind the black hole from the movie Interstellar here.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

4 years ago

How will the audio feed from Perseverance make its way back to Earth?


Tags
5 years ago
Say Hello To The Carina Nebula 👋 

Say hello to the Carina Nebula 👋 

One of the largest panoramic images ever taken with our Hubble Space Telescope’s cameras, this image features a stunning 50-light-year-wide view of the intense central region of the Carina Nebula - a strange stellar nursery. The nebula is sculpted by the action of outflowing winds and scorching ultraviolet radiation from the monster stars that inhabit this inferno. The Carina Nebula lies within our own galaxy, about 7,500 light-years away. 

At the heart of the nebula is Eta Carinae — a system of two stars. The larger star, Eta Car A, is around 100 times as massive as the Sun and 5 million times as luminous! Stars of this size are extremely rare; our galaxy is home to hundreds of billions of stars, but only tens of them are as massive as Eta Car A.

This view of the Carina Nebula provided astronomers the opportunity to explore the process of star birth at a new level of detail. The hurricane-strength blast of stellar winds and blistering ultraviolet radiation within the cavity are now compressing the surrounding walls of cold hydrogen. This is triggering a second stage of new star formation. Hubble has also enabled scientists to generate 3-D models that reveal never-before-seen features of the interactions between the Eta Carinae star system.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
1 year ago

out of all the roles you've had in the past, which one do you feel has best prepared you to be a flight director?


Tags
9 years ago

Exercising in Space

Are you hoping to get to the gym more often in 2016? While you work out on Earth, here are a few ways that astronauts stay fit on the International Space Station.

image

Exercise is an important part of the daily routine for astronauts aboard the International Space Station to prevent bone and muscle loss, and to maintain cardiovascular health. On average, astronauts exercise two hours per day. The equipment they use in space is different than what we use on Earth.

Lifting 200 pounds on Earth may be a lot of work, but in microgravity a 200 pound dumbbell would not weigh anything. Therefore, free weights do not serve as a good strength training tool for the astronauts in space.  That means exercise equipment needs to be specifically designed for use in space so astronauts will receive the workout needed.

What Equipment Do They Use in Space?

Advanced Resistive Exercise Device (ARED)

image

The ARED hardware uses adjustable resistance piston-driven vacuum cylinders along with a flywheel system to simulate free-weight exercises in normal gravity. It’s primary goal is to maintain muscle strength and bone mass in astronauts during long periods in space.

Cycle Ergometer with Vibration Isolation System (CEVIS)

image

CEVIS is very similar to a mechanical bicycle. It’s bolted to the floor, and astronauts snap their shoes on to the pedals. A seat belt can be used to hold them in position, and they can change the resistance for varying levels of difficulty.

Russian Treadmill (BD-2)

image

BD-2 is the treadmill that is found in the Russian segment of the space station. It allows crew members to walk and run with a speed from 2.4 to 20 km/hr. 

Combined Operational Load Bearing External Resistance Treadmill (COLBERT)

image

COLBERT is the second generation U.S. treadmill on the space station. It features data collection devices that will allow scientists and doctors to evaluate how effective the exercise is in reducing the amount of bone and muscle density loss due to microgravity exposure. It allows crew members to walk and run with a speed from 4.8 to 20 km/hr. 

Why is it called COLBERT? 

image

The treadmill’s name was selected after comedian Stephen Colbert took interest in our online naming poll for Node 3 of space station. He urged his viewers to submit the name “Colbert.” Although we ended up choosing the suggested name “Tranquillity” for the node, we designated its new treadmill “COLBERT” in honor of the name that received the most entries.

VELO Ergomoeter Bike (VB-3)

image

VB-3 is used for aerobic training, medical tests and pedaling regimes. It is located in the Russian segment of the space station. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago
INCOMING! Roving Scientist To Arrive On Mars. 

INCOMING! Roving scientist to arrive on Mars. 

Save the date! One year from today, Feb. 18, 2021, our next rover is set to land on Mars. Get to know #Mars2020 now! Click here. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Are We Alone? How NASA Is Trying to Answer This Question.

One of the greatest mysteries that life on Earth holds is, “Are we alone?”

image

At NASA, we are working hard to answer this question. We’re scouring the universe, hunting down planets that could potentially support life. Thanks to ground-based and space-based telescopes, including Kepler and TESS, we’ve found more than 4,000 planets outside our solar system, which are called exoplanets. Our search for new planets is ongoing — but we’re also trying to identify which of the 4,000 already discovered could be habitable.

image

Unfortunately, we can’t see any of these planets up close. The closest exoplanet to our solar system orbits the closest star to Earth, Proxima Centauri, which is just over 4 light years away. With today’s technology, it would take a spacecraft 75,000 years to reach this planet, known as Proxima Centauri b.

How do we investigate a planet that we can’t see in detail and can’t get to? How do we figure out if it could support life?

This is where computer models come into play. First we take the information that we DO know about a far-off planet: its size, mass and distance from its star. Scientists can infer these things by watching the light from a star dip as a planet crosses in front of it, or by measuring the gravitational tugging on a star as a planet circles it.

We put these scant physical details into equations that comprise up to a million lines of computer code. The code instructs our Discover supercomputer to use our rules of nature to simulate global climate systems. Discover is made of thousands of computers packed in racks the size of vending machines that hum in a deafening chorus of data crunching. Day and night, they spit out 7 quadrillion calculations per second — and from those calculations, we paint a picture of an alien world.

image

While modeling work can’t tell us if any exoplanet is habitable or not, it can tell us whether a planet is in the range of candidates to follow up with more intensive observations. 

image

One major goal of simulating climates is to identify the most promising planets to turn to with future technology, like the James Webb Space Telescope, so that scientists can use limited and expensive telescope time most efficiently.

image

Additionally, these simulations are helping scientists create a catalog of potential chemical signatures that they might detect in the atmospheres of distant worlds. Having such a database to draw from will help them quickly determine the type of planet they’re looking at and decide whether to keep observing or turn their telescopes elsewhere.

Learn more about exoplanet exploration, here. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
4 years ago

What range/area will Perseverance be able to cover on the Martian surface? I'm assuming it's greater than the other rovers but by how much?


Tags
4 years ago

Space toilet, Radishes, and a Spacewalk in Virtual Reality

A rocket is launching to the International Space Station next week, carrying tons of science and supplies to the orbiting laboratory. It’s Northrop Grumman’s 14th (NG-14) commercial resupply cargo mission, and includes plant research, a new space toilet, and a special virtual reality camera designed to immerse you in a spacewalk. Let’s take a closer look at what’s on board, and how you can ask some of the scientists anything.

image

A new way to “boldly go” in space  

image

A new space toilet is heading to the space station. It’s smaller than the current toilets aboard the station, and includes a 3D printed titanium cover for its dual fan separator. These are just some of the upgrades that make it better suited for our deep space exploration missions. Engineers also gathered feedback from astronauts and set out to design more comfortable attachments that would make “boldly going” in space a more enjoyable experience. The toilet is being tested on the space station, and will also be used on a future Artemis mission. The new design will allow us to increase how much water we recover for use, because yep … yesterday’s coffee becomes tomorrow’s drinking water. See below for an opportunity to speak with the folks who made the new space toilet happen.  

Space plants are rad(ish)!  

image

Astronauts traveling to the Moon and Mars will need to grow food to supplement their diets. The latest in plant studies aboard the space station hopes to pack a crunch in that research. We’ll be growing radishes in a special plant chamber, and learning how light, water, atmosphere, and soil conditions affect the bulbous vegetables. Radishes are nutritious, grow quickly (roughly four weeks from sowing to harvest), and are genetically similar to Arabidopsis, a plant frequently studied in microgravity. What we learn could help optimize growth of the plants in space as well as provide an assessment of their nutrition and taste. See below for an opportunity to ask anything of the scientist and engineer behind this new crop.  

Immerse yourself in a spacewalk  

image

If going to space is on your bucket list, you might be closer than you think to checking that box. Felix & Paul Studios is creating an immersive 360 virtual reality film of a spacewalk that will put you right next to the astronauts as they go about their work on the outside of the space station … at 17,500 miles per hour. The new camera, specially designed to withstand the incredibly harsh environment of space, will be mounted on the station’s robotic arm so it can be maneuvered around the outside of the space station. Félix Lajeunesse and Paul Raphaël are the co-founders of the immersive entertainment studio, and have been producing a film aboard the space station – from Earth – for more than a year already. See below for a chance to ask them anything about what filming in space takes.  

Space Toilet, Radishes, And A Spacewalk In Virtual Reality

You can join in the NG-14 Reddit Ask Me Anything on Friday, Sept. 25 to ask anything of these folks and their projects. Here’s the schedule:  

Space toilet (a.k.a the Universal Waste Management System): Melissa McKinley with NASA’s Advanced Exploration Systems and Jim Fuller of Collins Aerospace, and program manager for UWMS at 12 p.m. EDT at https://www.reddit.com/r/space.

Radishes in space (a.k.a. Plant Habitat-02): Dr. Karl Hasenstein is the scientist behind the Plant Habitat-02, and Dave Reed knows the ins and outs of the Advanced Plant Habitat of the space station. Their Reddit AMA begins at 3 p.m. EDT at https://www.reddit.com/r/gardening.

Virtual reality spacewalk camera: Félix Lajeunesse and Paul Raphaël co-founders and creative directors of Felix & Paul Studios will be taking questions at 5 p.m. EDT on https://www.reddit.com/r/filmmakers.

These are just a few of the payloads launching aboard the NG-14 Cygnus cargo vehicle to the space station next week. Read about the cancer research, and new commercial products also heading to space and watch the video above to learn more. Launch is targeted for Tuesday, Sept. 29, with a five-minute launch window opening at approximately 10:26 p.m. EDT. Live coverage begins on NASA TV at 10 p.m. EDT.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Other than joy, why do you do the things you do?


Tags
7 years ago

Solar System: 10 Things to Know This Week...Halloween Edition!

This week, we're getting into the Halloween spirit with 10 spooktacular things to let your imagination run wild. 

image

It's not Halloween without our favorite scary characters, but what if they could stop bothering us Earthlings and go far, far away? We begin with where Dracula, Frankenstein, and other creepy creatures might choose to live if the galaxy were theirs to claim...

1. The dark (k)night.

image

The prince of darkness himself, Dracula, can finally seek sweet respite from the Sun. We think he'd love to live on a rocky planet named YZ Ceti d that orbits so close to its red star that it's tidally locked keeping one side of the planet in perpetual nighttime and the other side in perpetual daytime, with a brilliant red sky (though we can guess which side Dracula will prefer). 

2. Where art thou, werewolves? 

image

Home sweet home for our furry Full Moon friends might just be on Trappist-1, a planetary system with seven planets—and where standing on one planet would mean the other planets look like six moons (some as big as our Moon in the sky). 

3. Left in the dust. 

image

We couldn't think of anyone better to live on Proxima b than The Mummy. Hopefully this ancient monster can finally rest in peace on an exoplanet that scientists theorize is a desert planet once home to ancient oceans. 

4. Cloudy with a chance of Frankenstein.

image

One scientific experiment we'd like to conduct: whether Frankenstein would rather live on HAT-P-11b or Kepler-3b, theorized to have fierce thunderstorms and lightning. 

5. The walking dead. 

image

We're pretty confident that if zombies were to pick a planet, they'd want one that shares their love of death and destruction. We think they'd feel right at home on one of the pulsar planets, which are scorched by radiation because they orbit a dead star. 

6. Rest your weary bones. 

image

Skeletons need look no further: Osiris, an exoplanet that's so close to a star that it's "losing its flesh" as the star destroys it, seems like a perfect match. 

7. Enough of the scary stuff. 

image

For kids out there, turn pumpkin decorating into an out-of-this-world activity with space-themed stencils, from Saturn to the Sun. 

8. Spooky sounds. 

image

Cassini's radio emissions from Saturn could give creaky doors and howling winds a run for their money. Listen to the eerie audio recordings here and find more HERE.

9. Pumpkin-carve like a NASA engineer. 

image

NASA engineers design and build robots that can fly millions of miles to study other planets for a living—so on Halloween, they can't help but bring that creative thinking to the grand old tradition of pumpkin carving. Take a cue from their creations with these insider tips.

10. Detective for a day. 

image

From blades of ice on Pluto to a fuzzy, white "bunny" photographed on Mars, become a solar system sleuth and see if you can solve the stellar mysteries in this slideshow (then compare with how scientists cracked the case). 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
  • marci-redfield
    marci-redfield liked this · 4 days ago
  • misssickn
    misssickn liked this · 2 months ago
  • tashandwhateverelse
    tashandwhateverelse liked this · 7 months ago
  • cozy-queen-of-hats
    cozy-queen-of-hats liked this · 1 year ago
  • gommetrik
    gommetrik reblogged this · 2 years ago
  • cliffsteele
    cliffsteele reblogged this · 2 years ago
  • cliffsteele
    cliffsteele liked this · 2 years ago
  • thinkaboutshrek
    thinkaboutshrek liked this · 3 years ago
  • hissme
    hissme liked this · 3 years ago
  • spaceoo
    spaceoo liked this · 3 years ago
  • astrangestarlingsworld
    astrangestarlingsworld liked this · 3 years ago
  • mischief02
    mischief02 liked this · 3 years ago
  • ct2311
    ct2311 liked this · 4 years ago
  • seeselfblack
    seeselfblack liked this · 4 years ago
  • tsaaa
    tsaaa liked this · 4 years ago
  • way-too-indecisive
    way-too-indecisive liked this · 4 years ago
  • nightfury-fury
    nightfury-fury liked this · 4 years ago
  • bijective-homomorphism
    bijective-homomorphism reblogged this · 4 years ago
  • girlswhosmell100000
    girlswhosmell100000 liked this · 4 years ago
  • lemon-len
    lemon-len reblogged this · 4 years ago
  • lemon-len
    lemon-len liked this · 4 years ago
  • sunday-aloe
    sunday-aloe liked this · 4 years ago
  • selenesparis
    selenesparis liked this · 4 years ago
  • lucy-loves-apples
    lucy-loves-apples reblogged this · 5 years ago
  • greenandgrowingthings
    greenandgrowingthings liked this · 5 years ago
  • gem-thebee
    gem-thebee reblogged this · 5 years ago
  • kleinebloodymoron
    kleinebloodymoron reblogged this · 5 years ago
  • mysticalkryptonitemoon
    mysticalkryptonitemoon liked this · 5 years ago
  • neuerinnerungen
    neuerinnerungen liked this · 5 years ago
  • unknown-uwoit
    unknown-uwoit liked this · 5 years ago
  • chosenofyffre
    chosenofyffre reblogged this · 5 years ago
  • chosenofyffre
    chosenofyffre liked this · 5 years ago
  • lobselvith8
    lobselvith8 reblogged this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags