Astronaut Journal Entry - The Last Week

Astronaut Journal Entry - The Last Week

Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry, written in space, by NASA astronaut Scott Tingle.

To read more entires from this series, visit our Space Blogs on Tumblr.

image

I can’t believe that Expedition 55 is already over. Today is Sunday, and we will depart the International Space Station (ISS) next Sunday morning (June 3). 

168 days in space. 

There have been many challenging moments, but even more positive highlights of our time on ISS. The new crew from the Soyuz MS-08 spacecraft (Oleg Artymyev, Drew Feustel and Ricky Arnold) joined Norishige Kanai (Nemo), Anton Shkaplerov and I last March. Since then, we have completed two spacewalks, captured and released the SpaceX Dragon-14 cargo craft, captured the Cygnus OA-9 cargo craft and completed a myriad of maintenance and science activities. 

Astronaut Journal Entry - The Last Week

The team on the ground controlling, monitoring, supporting and planning has been amazing. It is always great to work with them, and especially during the moments where the equipment, tools, procedures or crew need help. It is incredible to see how much a good team can accomplish when methodically placing one foot in front of the other. 

I have been lucky in that the first crew (Mark Vande Hei, Joe Acaba and Alexander Misurkin (Sasha)) and the second crew (Drew, Ricky and Oleg) were all amazing to work with. I do believe the planets aligned for my mission onboard ISS. 

Astronaut Journal Entry - The Last Week

Drew and Ricky have been friends forever, and listening to them nip at each other provided a ton of great humor for the ground and for us. Their one-liners to each other reminded me of several scenes from the movie Space Cowboys. 

This a great example that happened as I was writing this log entry:    

Ricky:  Hey Maker, is this your smoothie?   

Maker:  No.  

Ricky:  It must be Drew’s.

 Drew:  Hey Ricky, don’t drink my smoothie.

Ricky:  What smoothie? This one has my name on it (as he writes his name on it).

 Drew:  Okay, Grandpa Underpants, hands off my smoothie.

Ricky:  Okay, Feustelnaut – we have rules around here, so this is my smoothie now!

All:  Much laughing. (To quote my kids: “LOL!”)

One the hardest things to do in space is to maintain positive control of individual items such as tools, spare parts, fasteners, etc. We try very hard not to lose things, but even with all of the attention and positive control, items can still float away and disappear. 

We generally hold items in a crew transfer bag (CTB). Inside the CTB are many items for the system that it supports. When the CTB is opened, the items are free floating inside the bag and tend to escape. It is very difficult to maintain control of the items – especially if they are small, do not have Velcro, or when the daily schedule is so tight that we are rushing to stay on time. We always try to close the CTB’s and Ziploc bags after removing or replacing each item to maintain positive control, but this takes much more time to do for individual items, and if the timeline is tight, we absorb more risk by rushing. 

Astronaut Journal Entry - The Last Week

The same applies for tools, which we usually keep in a Ziploc bag while working on individual systems and tasks. Last month, I was installing a new low temperature cooling loop pump that had failed a month or two earlier. I gathered the needed tools into my modified (with Velcro) Ziploc bag as I always do and floated over to the work area. When I got there, one of the tools that I had gathered was missing. I looked for 30 minutes, and could not find it. Lost items are very hard to find because the items that escape are usually barely moving and blend in with the environment very quickly. A lost item could be right in front of us and we would never see it. 

Astronaut Journal Entry - The Last Week

Our crew, after learning these lessons, decided that when anyone loses something, we would tell the other crew members what we had lost with a general location. This has had a huge impact on finding items. If a different crew member can help within the first minutes of losing an item, the new crew member has an excellent chance of finding the item. We have proven this technique several times during the expedition – and Nemo was the very best at quickly finding lost items. But, in my case, we still could not find the missing tool. Our amazing ground team understood and vectored me to a replacement tool and I finished the job. I spent the next 3 weeks watching, looking and never forgetting about the lost tool. Then, one day last week, Oleg came to the lab and handed us a tool he had found in his Soyuz spacecraft, way on the aft side of the ISS. Amazing. We finally found the tool and I was happy again. This was a lucky ending. ISS has many corners, crevices and hard-to-see areas where missing items could hide and never be found.

Astronaut Journal Entry - The Last Week

We captured a Cygnus cargo craft last Thursday. I was very impressed with the entire team. Our specialists and training professionals in Mission Control did a great job preparing the necessary procedures and making sure we were proficient and ready to conduct operations. The robotic arm is a wonderful system that we could not operate ISS without. Being in space, however, it has some very unique handling qualities. If you think about a spring-mass-damper system just as you did during physics or control theory class, and then remove the damper, you will see a system that is very subject to slow rate oscillations. 

In test pilot terms, damping ratio is very low and the latency is well over a half of a second. Also in test pilot terms – this is a pilot-induced oscillations (PIO) generator. These characteristics require crew to “fly” the robotic arm using open-loop techniques, which requires a huge amount of patience. Test pilots are sometimes not very patient, but understanding the system and practicing with the incredible simulators that our ground team built and maintain help keep our proficiency as high as possible. The capture went flawlessly, and I was very impressed with the professionalism across the board – crew, flight controllers and training professionals – what a great job!

Astronaut Journal Entry - The Last Week

Drew, Ricky and I got to play guitar a few times while on ISS. This was fun! Drew connected pickups to the acoustic guitars and then connected the pickups to our tablets for amplification. I’ve never heard an acoustic guitar sound like an electric guitar amped up for heavy metal before. We had a great jam on the song “Gloria”, and a couple others. Rock on!

Last night we had our last movie night. The entire crew gathered in Node 2 and watched Avengers Infinity Wars on the big screen. We enjoy each other’s company, as we did during Expedition 54, and this was a welcome break from the daily grind of trying to complete the required stowage, maintenance and science activities while preparing for departure.

Our last full weekend here on ISS. I gave myself a haircut. We usually clean our spaces each weekend to make sure we can maintain a decent level of organization, efficiency and morale. This weekend is no different, and it is time for me to vacuum out all of our filters and vents. You’d be amazed at what we find!

The top 5 things I will miss when I am no longer in space:

The incredible team that supports ISS operations from our control centers

The camaraderie onboard ISS

The breathtaking view of the Earth, Moon, Sun and Stars

Floating/flying from location to location with very little effort

Operations in the extreme environment of space

Find more ‘Captain’s Log’ entries HERE.

Follow NASA astronaut Scott Tingle on Instagram and Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

More Posts from Nasa and Others

3 years ago

How Climate Change Showed Up in 2021

2021 was tied for the sixth-hottest year since modern record keeping began. We work together with the National Oceanic and Atmospheric Administration to track temperatures around the world and study how they change from year to year.

How Climate Change Showed Up In 2021

For decades, the overall global temperature has been increasing because of human activities. The last decade has been the warmest on record. Each individual year’s average temperature, however, can be affected by things like ocean circulation, volcanic eruptions, and specific weather events.

For instance, last year we saw the beginning of La Niña – a pattern of cooler waters in the Pacific – that was responsible for slightly cooling 2021’s average temperature. Still, last year continued a long-term trend of global warming.

Globally, Earth’s temperature in 2021 was nearly 2°F warmer than the late 19th Century, for the seventh year in a row.

How Climate Change Showed Up In 2021

The Record

Studying 142 Years

Since 1880, we can put together a consistent record of temperatures around the planet and see that it was much colder in the late-19th century. Before 1880, uncertainties in tracking global temperatures are larger. Temperatures have increased even faster since the 1970s, the result of increasing greenhouse gases in the atmosphere.

Tracking Millions of Individual Observations

Our scientists use millions of individual observations of data from more than 20,000 weather stations and Antarctic research stations, together with ship- and buoy-based observations of sea surface temperatures, to track global temperatures.

How Climate Change Showed Up In 2021

Reviewing Multiple Independent Records

Our global temperature record – GISTEMP – is one of a number of independent global temperature records, all of which show the same pattern of warming.

How Climate Change Showed Up In 2021

The Consequences

Everywhere Experiences Climate Change Differently

As Earth warms, temperature changes occur unevenly around the globe. The Arctic is currently warming about four times faster than the rest of the planet – a process called Arctic amplification. Similarly, urban areas tend to warm faster than rural areas, partly because building materials like asphalt, steel and concrete retain heat.

How Climate Change Showed Up In 2021

Droughts and Floods in Warmer Weather

More than 88% of the Western US experienced drought conditions in 2021. At the same time, communities in Western Europe saw two months’ worth of rain in 24 hours, breaking records and triggering flash floods. Because a hotter climate means more water can be carried in the atmosphere, areas like the Western US suffer drought from the increased 'thirstiness' of the atmosphere, while precipitation events can become more extreme as the amount of moisture in the atmosphere rises.

How Climate Change Showed Up In 2021

Sea Levels Continue to Rise

Melting ice raises sea levels around the world, as meltwater drains into the ocean. In addition, heat causes the ocean water to expand. From 1993 to today, global mean sea level has been rising around 3.4 millimeters per year. In 2021, sea level data from the recently launched NASA/ESA Sentinel-6 Michael Freilich mission became available to the public.

How Climate Change Showed Up In 2021

There is Hope

“This is not good news, but the fact that we are able to track this in real time and understand why it’s changing, and get people to notice why it’s changing and how we can change things to change the next trajectory, that gives me hope. Because we’re not in the dark here. We’re not the dinosaurs who are unaware the comet is coming. We can see the comet coming, and we can act.” – Dr. Gavin Schmidt, director of NASA GISS, where the global temperature record is calculated

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago

From Racing Suits to Robotic Gloves: How to Gear Up with NASA Technology

Did you know you are surrounded by NASA technology? From your apartment building to the doctor’s office, and even in your cellphone camera, there is more space in your life than you think!

In the latest edition of Spinoff, we are introducing dozens of new ways NASA technology could cross your path. Whether you need an extra “hand” on the production line or a weatherproof jacket, check out how to gear up with technology made for space.

Grip-Strengthening Glove

A man in a blue polo shirt wears a white and yellow grip-strengthening glove, which he uses to lift and turn various objects, including a large wrench.

Robots are crucial to exploring space and other planets – they could even support astronauts and form the advance party for places humans have yet to reach. But the human machine is hard to replicate.

A collaboration with General Motors helped us build Robonaut 2 – and the design for this robot’s hands has been adapted into a robotic glove that helps manufacturing employees, such as automobile workers, reduce injuries and improve quality control.

The Swedish company Bioservo used the Robo-Glove technology to create the world’s first industrial-strength robotic glove for factory workers who perform repetitive manual tasks.

The Ironhand glove adds force to the user’s grip with artificial tendons and pressure sensors on the palm and the fingers.

The result? Reduced strain on the user’s own tendons and muscles, meaning fewer workplace stress injuries and better comfort for workers.

Temperature-Control Fabrics

NASA astronaut Anne McClain displays a U.S. spacesuit glove that consists of several layers for extra thermal protection and comfort. Thermofoil heaters are also attached inside each of the fingertips in one of the layers of the glove.

Spacesuits need major insulation and temperature control to protect astronauts on extravehicular activities, aka spacewalks. To help solve this, we created a phase-change material with help from the Triangle Research and Development Corporation.

With funding from a NASA Small Business Innovation Research contract, Triangle incorporated the material into a fabric glove insert that could maintain a steady temperature by absorbing and releasing heat, ensuring it feels just right.

While the invention never made it to orbit, it did make it into the driver’s seat.

Outlast Technologies exclusively licensed the material from Triangle and has incorporated it into outdoor gear, bedding, and now – auto racing suits with help from Cambridge, England-based Walero.

Cristiana Oprea, a racer, wears a black Walero racing undergarment while sitting on a red divider at the edge of a racetrack.

Due to extreme temperatures in the cockpit, drivers in almost every major racing championship wear Walero for its cooling properties. Cristiana Oprea (pictured) wears it while driving for the European Rally Championship. Credit: Walero

The race undergarments, bonded with fire-retardant material for added protection, help drivers maintain a lower core temperature and heart rate, which means fewer mistakes and better lap times.

The suits have been sold to both amateur racers and professional NASCAR drivers.

Lightweight Rain Jackets

Astronaut John Grunsfeld works on repairs to the Hubble Space Telescope.

The superinsulating material that makes up space blankets is one of our most ubiquitous spinoffs. Found everywhere from inside the walls and roofs of buildings to cryogenic tanks and MRI machines, radiant barrier technology was first created to insulate spacesuits and spacecraft. And now this NASA spinoff can be found in weatherproof jackets as well.

Inspired by her passion to run following a series of surgeries to help correct a life-threatening injury, Hema Nambiar launched her Larchmont, New York, start-up company 13-One. To create her jacket, she worked with Advanced Flexible Materials Inc.’s brand Heatsheets. The brand was already marketing products like the space blankets traditionally distributed after races to prevent dangerous drops in temperature.

A man wears a 13-One jacket.

The 13-One jackets are designed to be warm and weatherproof, but their thin, reflective lining lets them also be lightweight and easily portable. Credit: Lourenso Ramautar, Out of New York Studio

The resulting line of jackets has a black exterior and a lining to reflect body heat. They weigh less than a pound, are wind- and water-resistant, and easily pack into a small, built-in pouch.

Want to check out more NASA spinoffs? Be sure to find us on spinoff.nasa.gov and on Twitter.

Interested in licensing your own NASA technologies? Check out the NASA Technology Transfer program at technology.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago
How Will The James Webb Space Telescope Change How We See The Universe? Ask An Expert!

How will the James Webb Space Telescope change how we see the universe? Ask an expert!

The James Webb Space Telescope is launching on December 22, 2021. Webb’s revolutionary technology will explore every phase of cosmic history—from within our solar system to the most distant observable galaxies in the early universe, to everything in between. Postdoctoral Research Associate Naomi Rowe-Gurney will be taking your questions about Webb and Webb science in an Answer Time session on Tuesday, December 14 from noon to 1 p.m EST here on our Tumblr!

🚨 Ask your questions now by visiting http://nasa.tumblr.com/ask.

Dr. Naomi Rowe-Gurney recently completed her PhD at the University of Leicester and is now working at NASA Goddard Space Flight Center as a postdoc through Howard University. As a planetary scientist for the James Webb Space Telescope, she’s an expert on the atmospheres of the ice giants in our solar system — Uranus and Neptune — and how the Webb telescope will be able to learn more about them.

How Will The James Webb Space Telescope Change How We See The Universe? Ask An Expert!

The James Webb Space Telescope – fun facts:

Webb is so big it has to fold origami-style to fit into its rocket and will unfold like a “Transformer” in space.

Webb is about 100 times more powerful than the Hubble Space Telescope and designed to see the infrared, a region Hubble can only peek at.

With unprecedented sensitivity, it will peer back in time over 13.5 billion years to see the first galaxies born after the Big Bang––a part of space we’ve never seen.

It will study galaxies near and far, young and old, to understand how they evolve.

Webb will explore distant worlds and study the atmospheres of planets orbiting other stars, known as exoplanets, searching for chemical fingerprints of possible habitability.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
8 years ago

In Case You Missed It...

NASA astronaut Jessica Meir sat down and answered your questions during a Tumblr AnswerTime session! 

But don’t worry, we’ve got a recap for you! In addition to the highlights below, you can check out the full AnswerTime here. 

image

Astronaut Jessica Meir was selected as part of our 2013 astronaut class (which was 50% women!) and is currently training to go to space. She could be one of the first astronauts to ride in the Orion spacecraft, which will carry humans deeper into space than ever before. 

image

Let’s check out some of her responses...

image
image
image
image
In Case You Missed It...

Follow astronaut Jessica Meir for more: @Astro_Jessica on Twitter and Instagram and follow the Orion space capsule as it prepares to fly to deep space on Twitter and Facebook. Follow NASA on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Is the earth really as beautiful as they say from space?


Tags
6 years ago

10 Things: Why Cassini Mattered

One year ago, on Sept. 15, 2017, NASA’s Cassini spacecraft ended its epic exploration of Saturn with a planned dive into the planet’s atmosphere--sending back new science to the last second. The spacecraft is gone, but the science continues. Here are 10 reasons why Cassini mattered...

image

1. Game Changers

Cassini and ESA (European Space Agency)’s Huygens probe expanded our understanding of the kinds of worlds where life might exist.

image

2. A (Little) Like Home

At Saturn’s largest moon, Titan, Cassini and Huygens showed us one of the most Earth-like worlds we’ve ever encountered, with weather, climate and geology that provide new ways to understand our home planet.

image

3. A Time Machine (In a Sense)

Cassini gave us a portal to see the physical processes that likely shaped the development of our solar system, as well as planetary systems around other stars.

image

4. The Long Run

The length of Cassini’s mission enabled us to observe weather and seasonal changes over nearly half of a Saturn year, improving our understanding of similar processes at Earth, and potentially those at planets around other stars.

image

5. Big Science in Small Places

Cassini revealed Saturn’s moons to be unique worlds with their own stories to tell.

image

6. Ringscape

Cassini showed us the complexity of Saturn’s rings and the dramatic processes operating within them.

image

7. Pure Exploration

Some of Cassini’s best discoveries were serendipitous. What Cassini found at Saturn prompted scientists to rethink their understanding of the solar system.

image

8. The Right Tools for the Job

Cassini represented a staggering achievement of human and technical complexity, finding innovative ways to use the spacecraft and its instruments, and paving the way for future missions to explore our solar system.

image

9. Jewel of the Solar System

Cassini revealed the beauty of Saturn, its rings and moons, inspiring our sense of wonder and enriching our sense of place in the cosmos.

image

10. Much Still to Teach Us

The data returned by Cassini during its 13 years at Saturn will continue to be studied for decades, and many new discoveries are undoubtedly waiting to be revealed. To keep pace with what’s to come, we’ve created a new home for the mission--and its spectacular images--at https://solarsystem.nasa.gov/cassini.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
5 years ago

Get Ready To Launch America!

Get Ready To Launch America!

A new era of human spaceflight is about to begin. American astronauts will once again launch on an American rocket from American soil to the International Space Station as part of our Commercial Crew Program! NASA astronauts Bob Behnken and Doug Hurley will fly on SpaceX’s Crew Dragon spacecraft, lifting off on a Falcon 9 rocket at 4:32 p.m. EDT May 27, from Kennedy Space Center in Florida, for an extended stay at the space station for the Demo-2 mission. 

image

As the final flight test for SpaceX, this mission will validate the company’s crew transportation system, including the launch pad, rocket, spacecraft and operational capabilities. This also will be the first time NASA astronauts will test the spacecraft systems in orbit.

image

Behnken and Hurley were among the first astronauts to begin working and training on SpaceX’s next-generation human space vehicle and were selected for their extensive test pilot and flight experience, including several missions on the space shuttle.

image

Behnken will be the joint operations commander for the mission, responsible for activities such as rendezvous, docking and undocking, as well as Demo-2 activities while the spacecraft is docked to the space station.

image

Hurley will be the spacecraft commander for Demo-2, responsible for activities such as launch, landing and recovery.

image

Lifting off from Launch Pad 39A atop a specially instrumented Falcon 9 rocket, Crew Dragon will accelerate its two passengers to approximately 17,000 mph and put it on an intercept course with the International Space Station. In about 24 hours, Crew Dragon will be in position to rendezvous and dock with the space station. The spacecraft is designed to do this autonomously but astronauts aboard the spacecraft and the station will be diligently monitoring approach and docking and can take control of the spacecraft if necessary.

image

The Demo-2 mission will be the final major step before our Commercial Crew Program certifies Crew Dragon for operational, long-duration missions to the space station. This certification and regular operation of Crew Dragon will enable NASA to continue the important research and technology investigations taking place onboard the station, which benefits people on Earth and lays the groundwork for future exploration of the Moon and Mars starting with the agency’s Artemis program, which will land the first woman and the next man on the lunar surface in 2024. 

Get excited and follow along on social media using the hashtag #LaunchAmerica! 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago

What Are the Bright Spots on Ceres?

image

Dwarf planet Ceres has more than 130 bright areas, and most of them are associated with impact craters. Now, Ceres has revealed some of its well-kept secrets in two new studies in the journal Nature, thanks to data from our Dawn spacecraft.

Two studies have been looking into the mystery behind these bright areas. One study identifies this bright material as a kind of salt, while the other study suggests the detection of ammonia-rich clays. 

Study authors write that the bright material is consistent with a type of magnesium sulfate called hexahydrite. A different type of magnesium sulfate is familiar on Earth as Epsom salt.

image

Researchers, using images from Dawn’s framing camera, suggest that these salt-rich areas were left behind when water-ice sublimated in the past. Impacts from asteroids would have unearthed the mixture of ice and salt.

An image of Occator Crater (below) shows the brightest material on Ceres. Occator itself is 60 miles in diameter, and its central pit, covered by this bright material, measures about 6 miles wide. With its sharp rim and walls, it appears to be among the youngest features on the dwarf planet.

image

In the second nature study, members of the Dawn science team examined the composition of Ceres and found evidence for ammonia-rich clays. Why is this important?

Well, ammonia ice by itself would evaporate on Ceres today, because it is too warm. However, ammonia molecules could be stable if present in combination with other minerals. This raises the possibility that Ceres did not originate in the main asteroid belt between Mars and Jupiter, where it currently resides. But instead, might have formed in the outer solar system! Another idea is that Ceres formed close to its present position, incorporating materials that drifted in from the outer solar system, near the orbit of Neptune, where nitrogen ices are thermally stable.

image

As of this week, our Dawn spacecraft has reached its final orbital altitude at Ceres (about 240 miles from the surface). In mid-December, it will begin taking observations from this orbit, so be sure to check back for details!

ake sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago

First piece of Orion’s Artemis III pressure vessel arrives at NASA’s Michoud Assembly Facility in New Orleans. https://blogs.nasa.gov/artemis/2020/08/25/first-piece-of-artemis-iii-orion-delivered-to-nasa/

4 years ago

See the Closest Ever Images of the Sun

Solar Orbiter just released its first scientific data — including the closest images ever taken of the Sun.

Launched on February 9, 2020, Solar Orbiter is a collaboration between the European Space Agency and NASA, designed to study the Sun up close. Solar Orbiter completed its first close pass of the Sun on June 15, flying within 48 million miles of the Sun’s surface.

This is already closer to the Sun than any other spacecraft has taken pictures (our Parker Solar Probe mission has flown closer, but it doesn’t take pictures of the Sun). And over the next seven years, Solar Orbiter will inch even closer to the Sun while tilting its orbit above the plane of the planets, to peek at the Sun’s north and south poles, which have never been imaged before.

Here’s some of what Solar Orbiter has seen so far.

The Sun up close

image

Solar Orbiter’s Extreme Ultraviolet Imager, or EUI, sees the Sun in wavelengths of extreme ultraviolet light that are invisible to our eyes.

image

EUI captured images showing “campfires” dotting the Sun. These miniature bright spots are over a million times smaller than normal solar flares. They may be the nanoflares, or tiny explosions, long thought to help heat the Sun’s outer atmosphere, or corona, to its temperature 300 times hotter than the Sun’s surface. It will take more data to know for sure, but one thing’s certain: In EUI’s images, these campfires are all over the Sun.

image

The Polar and Helioseismic Imager, or PHI, maps the Sun’s magnetic field in a variety of ways. These images show several of the measurements PHI makes, including the magnetic field strength and direction and the speed of flow of solar material.

PHI will have its heyday later in the mission, as Solar Orbiter gradually tilts its orbit to 24 degrees above the plane of the planets, giving it a never-before-seen view of the poles. But its first images reveal the busy magnetic field on the solar surface.

Studying space

Solar Orbiter’s instruments don’t just focus on the Sun itself — it also carries instruments that study the space around the Sun and surrounding the spacecraft.

image

The Solar and Heliospheric Imager, or SoloHi, looks out the side of the Solar Orbiter spacecraft to see the solar wind, dust, and cosmic rays that fill the space between the Sun and the planets. SoloHi captured the relatively faint light reflecting off interplanetary dust known as the zodiacal light, the bright blob of light in the right of the image. Compared to the Sun, the zodiacal light is extremely dim – to see it, SoloHi had to reduce incoming sunlight by a trillion times. The straight bright feature on the very edge of the image is a baffle illuminated by reflections from the spacecraft’s solar array.

image

This first data release highlights Solar Orbiter’s images, but its in situ instruments also revealed some of their first measurements. The Solar Wind Analyser, or SWA instrument, made the first dedicated measurements of heavy ions — carbon, oxygen, silicon, and iron — in the solar wind from the inner heliosphere.

Read more about Solar Orbiter’s first data and see all the images on ESA’s website.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • darcycappelen
    darcycappelen liked this · 4 months ago
  • arnim
    arnim reblogged this · 2 years ago
  • arnim
    arnim liked this · 2 years ago
  • 9146lexi
    9146lexi liked this · 3 years ago
  • living-my-best-life5
    living-my-best-life5 liked this · 4 years ago
  • drain-flyy
    drain-flyy liked this · 4 years ago
  • lovemakemagic
    lovemakemagic liked this · 5 years ago
  • athousandforestsisinoneacorn
    athousandforestsisinoneacorn liked this · 5 years ago
  • gaydumbgeek
    gaydumbgeek liked this · 6 years ago
  • vivianit4
    vivianit4 reblogged this · 6 years ago
  • rqp2-blog
    rqp2-blog liked this · 6 years ago
  • nerfed-by-god
    nerfed-by-god reblogged this · 6 years ago
  • wearelikebutterflies
    wearelikebutterflies liked this · 6 years ago
  • davidschillo2
    davidschillo2 reblogged this · 6 years ago
  • davidschillo2
    davidschillo2 liked this · 6 years ago
  • moosemonstrous
    moosemonstrous reblogged this · 6 years ago
  • ninja-freak
    ninja-freak liked this · 6 years ago
  • sweet-prince-akira
    sweet-prince-akira liked this · 6 years ago
  • joviere
    joviere liked this · 6 years ago
  • fleurdebach5-blog
    fleurdebach5-blog liked this · 6 years ago
  • red-pandas-and-books
    red-pandas-and-books reblogged this · 6 years ago
  • kiimigi
    kiimigi liked this · 6 years ago
  • briefparadisenightmare-blog
    briefparadisenightmare-blog liked this · 6 years ago
  • enginigger
    enginigger liked this · 6 years ago
  • gentianablue
    gentianablue reblogged this · 6 years ago
  • anerdinallherglory
    anerdinallherglory liked this · 6 years ago
  • gentianablue
    gentianablue liked this · 6 years ago
  • vitaetmorsfilo
    vitaetmorsfilo liked this · 6 years ago
  • jostahr
    jostahr liked this · 6 years ago
  • scorpin312
    scorpin312 liked this · 6 years ago
  • depthsofmysol
    depthsofmysol reblogged this · 6 years ago
  • keenturtleinfluencer-blog
    keenturtleinfluencer-blog liked this · 6 years ago
  • ayoube2063
    ayoube2063 liked this · 6 years ago
  • kimbbangbbang
    kimbbangbbang liked this · 6 years ago
  • oshinytomato
    oshinytomato liked this · 6 years ago
  • allllamasarenerds
    allllamasarenerds reblogged this · 6 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags