Five Famous Pulsars From The Past 50 Years

Five Famous Pulsars from the Past 50 Years

Early astronomers faced an obstacle: their technology. These great minds only had access to telescopes that revealed celestial bodies shining in visible light. Later, with the development of new detectors, scientists opened their eyes to other types of light like radio waves and X-rays. They realized cosmic objects look very different when viewed in these additional wavelengths. Pulsars — rapidly spinning stellar corpses that appear to pulse at us — are a perfect example.

image

The first pulsar was observed 50 years ago on August 6, 1967, using radio waves, but since then we have studied them in nearly all wavelengths of light, including X-rays and gamma rays.

Typical Pulsar

Most pulsars form when a star — between 8 and 20 times the mass of our sun — runs out of fuel and its core collapses into a super dense and compact object: a neutron star. 

image

These neutron stars are about the size of a city and can rotate slowly or quite quickly, spinning anywhere from once every few hours to hundreds of times per second. As they whirl, they emit beams of light that appear to blink at us from space.

First Pulsar

One day five decades ago, a graduate student at the University of Cambridge, England, named Jocelyn Bell was poring over the data from her radio telescope - 120 meters of paper recordings.

image

Image Credit: Sumit Sijher

She noticed some unusual markings, which she called “scruff,” indicating a mysterious object (simulated above) that flashed without fail every 1.33730 seconds. This was the very first pulsar discovered, known today as PSR B1919+21.

Best Known Pulsar

Before long, we realized pulsars were far more complicated than first meets the eye — they produce many kinds of light, not only radio waves. Take our galaxy’s Crab Nebula, just 6,500 light years away and somewhat of a local celebrity. It formed after a supernova explosion, which crushed the parent star's core into a neutron star. 

image

The resulting pulsar, nestled inside the nebula that resulted from the supernova explosion, is among the most well-studied objects in our cosmos. It’s pictured above in X-ray light, but it shines across almost the entire electromagnetic spectrum, from radio waves to gamma rays.

Brightest Gamma-ray Pulsar

Speaking of gamma rays, in 2015 our Fermi Gamma-ray Space Telescope discovered the first pulsar beyond our own galaxy capable of producing such high-energy emissions. 

image

Located in the Tarantula Nebula 163,000 light-years away, PSR J0540-6919 gleams nearly 20 times brighter in gamma-rays than the pulsar embedded in the Crab Nebula.

Dual Personality Pulsar

No two pulsars are exactly alike, and in 2013 an especially fast-spinning one had an identity crisis. A fleet of orbiting X-ray telescopes, including our Swift and Chandra observatories, caught IGR J18245-2452 as it alternated between generating X-rays and radio waves. 

image

Scientists suspect these radical changes could be due to the rise and fall of gas streaming onto the pulsar from its companion star.

Transformer Pulsar

This just goes to show that pulsars are easily influenced by their surroundings. That same year, our Fermi Gamma Ray Space Telescope uncovered another pulsar, PSR J1023+0038, in the act of a major transformation — also under the influence of its nearby companion star. 

image

The radio beacon disappeared and the pulsar brightened fivefold in gamma rays, as if someone had flipped a switch to increase the energy of the system. 

NICER Mission

Our Neutron star Interior Composition Explorer (NICER) mission, launched this past June, will study pulsars like those above using X-ray measurements.

image

With NICER’s help, scientists will be able to gaze even deeper into the cores of these dense and mysterious entities.

For more information about NICER, visit https://www.nasa.gov/nicer

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

5 years ago
Say Hello To The Antennae Galaxies 👋

Say hello to the Antennae galaxies 👋

Two galaxies are locked in a deadly embrace in this Hubble Space Telescope image. Once normal, sedate spiral galaxies like the Milky Way, this galactic pair has spent the past few hundred million years sparring. The clash is so violent that stars have been ripped from their host galaxies to form a streaming arc between the two. 

The far-flung stars and streamers of gas stretch out into space, creating long tidal tails reminiscent of antennae (not visible in this close-up Hubble view). Clouds of gas blossom out in bright pink and red, surrounding the bright flashes of blue star-forming regions — some of which are partially obscured by dark patches of dust. 

Hubble’s observations have uncovered over 1,000 bright, young star clusters bursting to life as a result of the head-on wreck. The sweeping spiral-like patterns, traced by bright blue star clusters, shows the result of a firestorm of star-birth activity, which was triggered by the collision. The rate of star formation is so high that the Antennae galaxies are said to be in a state of starburst, a period in which all of the gas within the galaxies is being used to form stars. This cannot last forever, and neither can the separate galaxies; eventually the nuclei will coalesce and the galaxies will begin their retirement together as one large elliptical galaxy. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

100 Days in Houston

A lot can happen in 100 days...

At our Johnson Space Center, located in Houston, it has been busy since July 10. Here are six things that have been going on in Houston with our astronauts, the International Space Station and our next great telescope! Take a look:

1. Our James Webb Space Telescope is Spending 100 Days in a Freezing Cold Chamber

Imagine seeing 13.5 billion light-years back in time, watching the birth of the first stars, galaxies evolve and solar systems form…our James Webb Space Telescope will do just that once it launches in 2019.

image

Webb will be the premier observatory of the next decade, studying every phase in the cosmic history of our universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems.

On July 10, the Webb telescope entered Johnson Space Center’s historic Chamber A for its final cryogenic test that lasts about 100 days behind a closed giant vault-like door. 

Why did we put Webb in this freezing cold chamber? To ensure it can withstand the harsh environment it will experience in space.

image

The telescope has been in a space-like environment in the chamber, tested at cryogenic temperatures. In space, the telescope must operate at extremely cold temperatures so that it can detect infrared light – heat radiation -- from faint, distant objects. 

image

To keep the telescope cold while in space, Webb has a sunshield the size of a tennis court, which blocks sunlight (as well as reflected light from the Earth and Moon). This means that the sun-facing side of the observatory is incredibly hot while the telescope-side remains at sub-freezing temperatures.

2. Our 12 new astronaut candidates reported to Houston to start training

image

Our newest class of astronaut candidates, which were announced on June 7, reported for training on August 13. These candidates will train for two years on International Space Station systems, space vehicles and Russian language, among many other skills, before being flight-ready. 

3. Our Mission Control Center operated for 2,400 hours

image

While astronauts are in space, Mission Control operates around the clock making sure the crew is safe and the International Space Station is functioning properly. This means workers in Mission Control work in three shifts, 7 a.m. – 4 p.m., 3 p.m. – midnight and 11 p.m. – 8 a.m. This includes holidays and weekends. Day or night, Mission Control is up and running.

4. Key Teams at Johnson Space Center Continued Critical Operations During Hurricane Harvey

image

Although Johnson Space Center closed during Hurricane Harvey, key team members and critical personnel stayed onsite to ensure crucial operations would continue. Mission Control remained in operation throughout this period, as well as all backup systems required to maintain the James Webb Space Telescope, which is at Johnson for testing, were checked prior to the arrival of the storm, and were ready for use if necessary.

5. Crews on the International Space Station conducted hundreds of science experiments.

image

Mission Control at Johnson Space Center supported astronauts on board the International Space Station as they worked their typical schedule in the microgravity environment. Crew members work about 10 hours a day conducting science research that benefits life on Earth as well as prepares us for travel deeper into space. 

image

The space station team in Houston supported a rigorous schedule of launches of cargo that included supplies and science materials for the crew living and working in the orbiting laboratory, launched there by our commercial partners. 

6. Two new crews blasted off to space and a record breaking astronaut returned from a stay on space station

image

Houston is home to the Astronaut Corps, some of whom end up going out-of-this-world. On July 28, NASA Astronaut Randy Bresnik launched to the International Space Station alongside Italian astronaut Paolo Naspoli and Russian cosmonaut Sergey Ryazanskiy. Joining them at the International Space Station were NASA Astronauts Joe Acaba and Mark Vande Hei who launched September 12 with Russian cosmonaut Alexander Misurkin.

image

When NASA Astronaut Peggy Whitson landed with crewmates Jack Fischer of NASA and Fyoder Yurchikhin of Roscosmos, she broke the record for the most cumulative time in space by a U.S. astronaut. She landed with over 650 days of cumulative flight time and more than 53 hours of spacewalk time. Upon her return, the Human Research Program in Houston studies her health and how the human body adapted to her time in space.

Learn more about the Johnson Space Center online, or on Facebook, Twitter or Instagram.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

A Day in Our Lives With X-Ray Tech

On July 23, 1999, NASA’s Chandra X-ray Observatory, the most powerful X-ray telescope ever built, was launched into space. Since then, Chandra has made numerous amazing discoveries, giving us a view of the universe that is largely hidden from view through telescopes that observe in other types of light.

image

The technology behind X-ray astronomy has evolved at a rapid pace, producing and contributing to many spinoff applications you encounter in day-to-day life. It has helped make advancements in such wide-ranging fields as security monitoring, medicine and bio-medical research, materials processing, semi-conductor and microchip manufacturing and environmental monitoring.

A Day In Our Lives With X-Ray Tech

7:00 am: Your hand has been bothering you ever since you caught that ball at the family reunion last weekend. Your doctor decides it would be a good idea for an X-ray to rule out any broken bones. X-rays are sent through your hand and their shadow is captured on a detector behind it. You’re relieved to hear nothing is broken, though your doctor follows up with an MRI to make sure the tendons and ligaments are OK.

Two major developments influenced by X-ray astronomy include the use of sensitive detectors to provide low dose but high-resolution images, and the linkage with digitizing and image processing systems. Because many diagnostic procedures, such as mammographies and osteoporosis scans, require multiple exposures, it is important that each dosage be as low as possible. Accurate diagnoses also depend on the ability to view the patient from many different angles. Image processing systems linked to detectors capable of recording single X-ray photons, like those developed for X-ray astronomy purposes, provide doctors with the required data manipulation and enhancement capabilities. Smaller hand-held imaging systems can be used in clinics and under field conditions to diagnose sports injuries, to conduct outpatient surgery and in the care of premature and newborn babies.

image

8:00 am: A technician places your hand in a large cylindrical machine that whirs and groans as the MRI is taken. Unlike X-rays that can look at bones and dense structures, MRIs use magnets and short bursts of radio waves to see everything from organs to muscles.

MRI systems are incredibly important for diagnosing a whole host of potential medical problems and conditions. X-ray technology has helped MRIs. For example, one of the instruments developed for use on Chandra was an X-ray spectrometer that would precisely measure the energy signatures over a key range of X-rays. In order to make these observations, this X-ray spectrometer had to be cooled to extremely low temperatures. Researchers at our Goddard Space Flight Center in Greenbelt, Maryland developed an innovative magnet that could achieve these very cold temperatures using a fraction of the helium that other similar magnets needed, thus extending the lifetime of the instrument’s use in space. These advancements have helped make MRIs safer and require less maintenance.

image

11:00 am:  There’s a pharmacy nearby so you head over to pick up allergy medicine on the way home from your doctor’s appointment.

X-ray diffraction is the technique where X-ray light changes its direction by amounts that depend on the X-ray energy, much like a prism separates light into its component colors. Scientists using Chandra take advantage of diffraction to reveal important information about distant cosmic sources using the observatory’s two gratings instruments, the High Energy Transmission Grating Spectrometer (HETGS) and the Low Energy Transmission Grating Spectrometer (LETGS).

X-ray diffraction is also used in biomedical and pharmaceutical fields to investigate complex molecular structures, including basic research with viruses, proteins, vaccines and drugs, as well as for cancer, AIDS and immunology studies. How does this work? In most applications, the subject molecule is crystallized and then irradiated. The resulting diffraction pattern establishes the composition of the material. X-rays are perfect for this work because of their ability to resolve small objects. Advances in detector sensitivity and focused beam optics have allowed for the development of systems where exposure times have been shortened from hours to seconds. Shorter exposures coupled with lower-intensity radiation have allowed researchers to prepare smaller crystals, avoid damage to samples and speed up their data runs.

image

12:00 pm: Don’t forget lunch. There’s not much time after your errands so you grab a bag of pretzels. Food safety procedures for packaged goods include the use of X-ray scans to make sure there is quality control while on the production line.

Advanced X-ray detectors with image displays inspect the quality of goods being produced or packaged on a production line. With these systems, the goods do not have to be brought to a special screening area and the production line does not have to be disrupted. The systems range from portable, hand-held models to large automated systems. They are used on such products as aircraft and rocket parts and structures, canned and packaged foods, electronics, semiconductors and microchips, thermal insulations and automobile tires.

image

2:00 pm: At work, you are busy multi-tasking across a number of projects, running webinar and presentation software, as well as applications for your calendar, spreadsheets, word processing, image editing and email (and perhaps some social media on the side). It’s helpful that your computer can so easily handle running many applications at once.

X-ray beam lithography can produce extremely fine lines and has applications for developing computer chips and other semiconductor related devices. Several companies are researching the use of focused X-ray synchrotron beams as the energy source for this process, since these powerful beams produce good pattern definition with relatively short exposure times. The grazing incidence optics — that is, the need to skip X-rays off a smooth mirror surface like a stone across a pond and then focus them elsewhere — developed for Chandra were the highest precision X-ray optics in the world and directly influenced this work.

image

7:00 pm: Dream vacation with your family. Finally!  You are on your way to the Bahamas to swim with the dolphins. In the line for airport security, carry-on bags in hand, you are hoping you’ve remembered sunscreen. Shoes off! All items placed in the tray. Thanks to X-ray technology, your bags will be inspected quickly and you WILL catch your plane…

The first X-ray baggage inspection system for airports used detectors nearly identical to those flown in the Apollo program to measure fluorescent X-rays from the Moon. Its design took advantage of the sensitivity of the detectors that enabled the size, power requirements and radiation exposure of the system to be reduced to limits practical for public use, while still providing adequate resolution to effectively screen baggage.  The company that developed the technology later developed a system that can simultaneously image, on two separate screens, materials of high atomic weight (e.g. metal hand guns) and materials of low atomic weight (e.g. plastic explosives) that pass through other systems undetected. Variations of these machines are used to screen visitors to public buildings around the world.

Check out Chandra’s 20th anniversary page to see how they are celebrating.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Are We Alone? How NASA Is Trying to Answer This Question.

One of the greatest mysteries that life on Earth holds is, “Are we alone?”

image

At NASA, we are working hard to answer this question. We’re scouring the universe, hunting down planets that could potentially support life. Thanks to ground-based and space-based telescopes, including Kepler and TESS, we’ve found more than 4,000 planets outside our solar system, which are called exoplanets. Our search for new planets is ongoing — but we’re also trying to identify which of the 4,000 already discovered could be habitable.

image

Unfortunately, we can’t see any of these planets up close. The closest exoplanet to our solar system orbits the closest star to Earth, Proxima Centauri, which is just over 4 light years away. With today’s technology, it would take a spacecraft 75,000 years to reach this planet, known as Proxima Centauri b.

How do we investigate a planet that we can’t see in detail and can’t get to? How do we figure out if it could support life?

This is where computer models come into play. First we take the information that we DO know about a far-off planet: its size, mass and distance from its star. Scientists can infer these things by watching the light from a star dip as a planet crosses in front of it, or by measuring the gravitational tugging on a star as a planet circles it.

We put these scant physical details into equations that comprise up to a million lines of computer code. The code instructs our Discover supercomputer to use our rules of nature to simulate global climate systems. Discover is made of thousands of computers packed in racks the size of vending machines that hum in a deafening chorus of data crunching. Day and night, they spit out 7 quadrillion calculations per second — and from those calculations, we paint a picture of an alien world.

image

While modeling work can’t tell us if any exoplanet is habitable or not, it can tell us whether a planet is in the range of candidates to follow up with more intensive observations. 

image

One major goal of simulating climates is to identify the most promising planets to turn to with future technology, like the James Webb Space Telescope, so that scientists can use limited and expensive telescope time most efficiently.

image

Additionally, these simulations are helping scientists create a catalog of potential chemical signatures that they might detect in the atmospheres of distant worlds. Having such a database to draw from will help them quickly determine the type of planet they’re looking at and decide whether to keep observing or turn their telescopes elsewhere.

Learn more about exoplanet exploration, here. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

A Total Lunar Eclipse is Coming: 10 Things to Know

If you were captivated by August's total solar eclipse, there's another sky show to look forward to on Jan. 31: a total lunar eclipse!

image

Below are 10 things to know about this astronomical event, including where to see it, why it turns the Moon into a deep red color and more...

1. First things first. What's the difference between solar and lunar eclipses? We've got the quick and easy explanation in this video:

2. Location, location, location. What you see will depend on where you are. The total lunar eclipse will favor the western U.S., Alaska, Hawaii, and British Columbia on Jan. 31. Australia and the Pacific Ocean are also well placed to see a major portion of the eclipse, if not all of it.

image

3. Color play. So, why does the Moon turn red during a lunar eclipse? Here's your answer:

4. Scientists, stand by. What science can be done during a lunar eclipse? Find out HERE. 

5. Show and tell. What would Earth look like from the Moon during a lunar eclipse? See for yourself with this artist's concept HERE. 

6. Ask me anything. Mark your calendars to learn more about the Moon during our our Reddit AMA happening Monday, Jan. 29, from 3-4 pm EST/12-1 pm PST.

A Total Lunar Eclipse Is Coming: 10 Things To Know

7. Social cues. Make sure to follow @NASAMoon and @LRO_NASA for all of the latest Moon news leading up to the eclipse and beyond.

8. Watch year-round. Can't get enough of observing the Moon? Make a DIY Moon Phases Calendar and Calculator that will keep all of the dates and times for the year's moon phases right at your fingertips HERE.

A Total Lunar Eclipse Is Coming: 10 Things To Know

Then, jot down notes and record your own illustrations of the Moon with a Moon observation journal, available to download and print from moon.nasa.gov.

9. Lesson learned. For educators, pique your students' curiosities about the lunar eclipse with this Teachable Moment HERE.

10. Coming attraction. There will be one more lunar eclipse this year on July 27, 2018. But you might need your passport—it will only be visible from central Africa and central Asia. The next lunar eclipse that can be seen all over the U.S. will be on Jan. 21, 2019. It won't be a blue moon, but it will be a supermoon.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
8 years ago

What Astronauts in Space Eat in a Day

There was a time when even NASA didn’t know if humans could eat in the microgravity environment of space. Thankfully for the future of long-term crewed missions, John Glenn proved that it was indeed possible when he ate applesauce from an aluminum tube while orbiting the Earth in 1962.

image

Since then, the research conducted at our Space Food Systems Laboratory at Johnson Space Center has resulted in improved taste, variety and packaging of foods intended for space travel. Current-day astronauts are now given a standard menu of over 200 approved food and drink items months before launch, allowing them to plan their daily meals far in advance.

image

So, with such a variety of foods to choose from, what does the typical astronaut eat in a day?  Here is an example from the International Space Station standard menu:

image

Sounds tasty, right?

image

However, these are only suggestions for astronauts, so they still have some choice over what they ultimately eat. Many astronauts, including Tim Kopra, combine different ingredients for meals.

image

Others plan to eat special foods for the holidays. Astronauts Scott Kelly and Kjell Lindgren did just that on Thanksgiving last year when they ate smoked turkey, candied yams, corn and potatoes au gratin.

image

Another key factor that influences what astronauts eat is the availability of fresh fruits and vegetables, which are delivered via resupply spacecrafts.  When these foods arrive to the space station, they must be eaten quickly before they spoil. Astronaut Tim Peake doesn’t seem to mind.

image

Nutrition is important to help counteract some of the effects spaceflight have on the body, such as bone and muscle loss, cardiovascular degradation, impairment of immune function, neurovestibular changes and vision changes. 

“Nutrition is vital to the mission,” Scott M. Smith, Ph.D., manager for NASA’s Nutritional Biochemistry Lab said. “Without proper nutrition for the astronauts, the mission will fail. It’s that simple.”

image

We work hard to help astronauts feel less homesick by providing them with food that not only reminds them of life back on Earth, but is also nutritious and healthy. 

image

Here are some unusual space food inventions that are no longer in use:

image

Gelatin-coated sandwich and cookie cubes

Compressed bacon squares

Freeze dried ice cream

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago

Rocket Launches and Rising Seas

At NASA, we’re not immune to effects of climate change. The seas are rising at NASA coastal centers – the direct result of warming global temperatures caused by human activity. Several of our centers and facilities were built near the coast, where there aren’t as many neighbors, as a safety precaution. But now the tides have turned and as sea levels rise, these facilities are at greater risk of flooding and storms.

image

Global sea level is increasing every year by 3.3 millimeters, or just over an eighth of an inch, and the rate of rise is speeding up over time. The centers within range of rising waters are taking various approaches to protect against future damage.

image

Kennedy Space Center in Florida is the home of historic launchpad 39A, where Apollo astronauts first lifted off for their journey to the Moon. The launchpad is expected to flood periodically from now on.

image

Like Kennedy, Wallops Flight Facility on Wallops Island, Virginia has its launchpads and buildings within a few hundred feet of the Atlantic Ocean. Both locations have resorted to replenishing the beaches with sand as a natural barrier to the sea.

image

Native vegetation is planted to help hold the sand in place, but it needs to be replenished every few years.

image

At the Langley Research Center in Hampton, Virginia, instead of building up the ground, we’re hardening buildings and moving operations to less flood-prone elevations. The center is bounded by two rivers and the Chesapeake Bay.

The effects of sea level rise extend far beyond flooding during high tides. Higher seas can drive larger and more intense storm surges – the waves of water brought by tropical storms.

image

In 2017, Hurricane Harvey brought flooding to the astronaut training facility at Johnson Space Center in Houston, Texas. Now we have installed flood resistant doors, increased water intake systems, and raised guard shacks to prevent interruptions to operations, which include astronaut training and mission control.

image

Our only facility that sits below sea level already is Michoud Assembly Facility in New Orleans. Onsite pumping systems protected the 43-acre building, which has housed Saturn rockets and the Space Launch System, from Hurricane Katrina. Since then, we’ve reinforced the pumping system so it can now handle double the water capacity.

image

Ames Research Center in Silicon Valley is going one step farther and gradually relocating farther south and to several feet higher in elevation to avoid the rising waters of the San Francisco Bay.

Understanding how fast and where seas will rise is crucial to adapting our lives to our changing planet.

image

We have a long-standing history of tracking sea level rise, through satellites like the TOPEX-Poseidon and the Jason series, working alongside partner agencies from the United States and other countries.

image

We just launched the Sentinel-6 Michael Freilich satellite—a U.S.-European partnership—which will use electromagnetic signals bouncing off Earth’s surface to make some of the most accurate measurements of sea levels to date.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Solar System: Things to Know This Week

We love Lucy—our spacecraft that will visit the ancient Trojan asteroids near Jupiter, that is. This week, let us count the ways this 2021 mission could revolutionize what we know about the origins of Earth and ourselves.

1. Lucky Lucy 

image

Earlier this year, we selected the Lucy mission to make the first-ever visit to a group of asteroids known as the Trojans. This swarm of asteroids orbits in two loose groups around the Sun, with one group always ahead of Jupiter in its path, and the other always behind. The bodies are stabilized by the Sun and Jupiter in a gravitational balancing act, gathering in locations known as Lagrange points.

2. Old. Really, Really Old

image

Jupiter's swarms of Trojan asteroids may be remnants of the material that formed our outer planets more than 4 billion years ago—so these fossils may help reveal our most distant origins. "They hold vital clues to deciphering the history of the solar system," said Dr. Harold F. Levison, Lucy principal investigator from Southwest Research Institute (SwRI) in Boulder, Colorado.

3. A Link to The Beatles

image

Lucy takes its name from the fossilized human ancestor, called "Lucy" by her discoverers, whose skeleton provided unique insight into humanity's evolution. On the night it was discovered in 1974, the team's celebration included dancing and singing to The Beatles' song "Lucy In The Sky With Diamonds." At some point during that evening, expedition member Pamela Alderman named the skeleton "Lucy," and the name stuck. Jump ahead to 2013 and the mission's principal investigator, Dr. Levison, was inspired by that link to our beginnings to name the spacecraft after Lucy the fossil. The connection to The Beatles' song was just icing on the cake.

4. Travel Itinerary

One of two missions selected in a highly competitive process, Lucy will launch in October 2021. With boosts from Earth's gravity, it will complete a 12-year journey to seven different asteroids: a Main Belt asteroid and six Trojans.

5. Making History

image

No other space mission in history has been launched to as many different destinations in independent orbits around the Sun. Lucy will show us, for the first time, the diversity of the primordial bodies that built the planets.

6. What Lies Beneath 

Lucy's complex path will take it to both clusters of Trojans and give us our first close-up view of all three major types of bodies in the swarms (so-called C-, P- and D-types). The dark-red P- and D-type Trojans resemble those found in the Kuiper Belt of icy bodies that extends beyond the orbit of Neptune. The C-types are found mostly in the outer parts of the Main Belt of asteroids, between the orbits of Mars and Jupiter. All of the Trojans are thought to be abundant in dark carbon compounds. Below an insulating blanket of dust, they are probably rich in water and other volatile substances.

7. Pretzel, Anyone?

image

This diagram illustrates Lucy's orbital path. The spacecraft's path (green) is shown in a slowly turning frame of reference that makes Jupiter appear stationary, giving the trajectory its pretzel-like shape.

8. Moving Targets

image

This time-lapsed animation shows the movements of the inner planets (Mercury, brown; Venus, white; Earth, blue; Mars, red), Jupiter (orange), and the two Trojan swarms (green) during the course of the Lucy mission.

9. Long To-Do List

Lucy and its impressive suite of remote-sensing instruments will study the geology, surface composition, and physical properties of the Trojans at close range. The payload includes three imaging and mapping instruments, including a color imaging and infrared mapping spectrometer and a thermal infrared spectrometer. Lucy also will perform radio science investigations using its telecommunications system to determine the masses and densities of the Trojan targets.

10. Dream Team

Several institutions will come together to successfully pull off this mission. The Southwest Research Institute in Boulder, Colorado, is the principal investigator institution. Our Goddard Space Flight Center will provide overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space Systems in Denver will build the spacecraft. Instruments will be provided by Goddard, the Johns Hopkins Applied Physics Laboratory and Arizona State University. Discovery missions are overseen by the Planetary Missions Program Office at our Marshall Space Flight Center in Huntsville, Alabama, for our Planetary Science Division.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago
In Case You Missed It Earlier In July, Here’s A Look At How Our View Of Pluto Has Changed Over The

In case you missed it earlier in July, here’s a look at how our view of Pluto has changed over the course of several decades. The first frame is a digital zoom-in on Pluto as it appeared upon its discovery by Clyde Tombaugh in 1930 (image courtesy Lowell Observatory Archives). The other images show various views of Pluto as seen by NASA’s Hubble Space Telescope beginning in the 1990s and NASA’s New Horizons spacecraft in 2015. The final sequence zooms in to a close-up frame of Pluto released on July 15, 2015.

This amazing view of details on Pluto came via New Horizons, which launched on Jan. 19, 2006. New Horizons swung past Jupiter for a gravity boost and scientific studies in February 2007, and conducted a reconnaissance flyby study of Pluto and its moons in summer 2015. Pluto closest approach occurred on July 14, 2015. As part of an extended mission, the spacecraft is expected to head farther into the Kuiper Belt to examine one or two of the ancient, icy mini-worlds in that vast region, at least a billion miles beyond Neptune’s orbit.

Image credits available here.


Tags
9 years ago

Holiday Lights...In Space

Holiday lights don’t come in one shape or size, just like they don’t only appear on Earth. Take a look at a few of these celestial light shows:

1. Galactic Wreath of Lights

image

This festive image captured by our Hubble Space Telescope resembles a holiday wreath made of sparkling lights. This galactic wreath is located around 6,500 light-years away.

2. Red and Green Aurora

image

This beautiful aurora was captured by Astronaut Scott Kelly while aboard the International Space Station. He shared it with his Twitter followers on June, 22 during his Year in Space mission. This image of Earth’s aurora is festive with its red and green lights.

3. Holiday Snow Angel

image

Our Hubble Space Telescope captured this stunning image of what looks like a soaring, celestial snow angel. This picture shows a bipolar star-forming region, called Sharpless 2-106.

4. Cosmic Holiday Ornament

image

This festive-looking nearby planetary nebula resembles a glass-blown holiday ornament with a glowing ribbon entwined. This cosmic decoration was spotted by our Hubble Space Telescope.

5. Holiday Lights on the Sun

image

Even the sun gets festive with it’s festive looking solar flares. This significant flare was seen by our Solar Dynamics Observatory (SOHO) on Dec. 19, 2014. Even though solar flares are powerful bursts of radiation, it cannot pas through Earth’s atmosphere to physically affect humans on the ground. That said, when intense enough, the radiation can disturb the atmosphere in the layer where GPS and communications signals travel.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • forwhomtheduccquacks
    forwhomtheduccquacks liked this · 6 months ago
  • blissyroe
    blissyroe liked this · 7 months ago
  • uss-constitution-constellation
    uss-constitution-constellation liked this · 1 year ago
  • kidwithgoggles
    kidwithgoggles reblogged this · 2 years ago
  • irlusa
    irlusa reblogged this · 2 years ago
  • irlusa
    irlusa liked this · 2 years ago
  • miglasmeitene
    miglasmeitene liked this · 2 years ago
  • naughtbutstars
    naughtbutstars liked this · 3 years ago
  • stochasticism
    stochasticism liked this · 3 years ago
  • theriseandriseof
    theriseandriseof liked this · 3 years ago
  • a-shower-of-roses
    a-shower-of-roses reblogged this · 3 years ago
  • alanshemper
    alanshemper reblogged this · 4 years ago
  • alanshemper
    alanshemper liked this · 4 years ago
  • cantuiakuq8
    cantuiakuq8 liked this · 4 years ago
  • saeminentodor65zkc
    saeminentodor65zkc liked this · 4 years ago
  • asshoules
    asshoules reblogged this · 4 years ago
  • asshoules
    asshoules liked this · 4 years ago
  • fridgeraidertm
    fridgeraidertm reblogged this · 4 years ago
  • fridgeraidertm
    fridgeraidertm liked this · 4 years ago
  • v-m-smith
    v-m-smith reblogged this · 4 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags