That Time We Flew Past Pluto…

That Time We Flew Past Pluto…

Two years ago today (July 14), our New Horizons spacecraft made its closest flyby of Pluto…collecting images and science that revealed a geologically complex world. Data from this mission are helping us understand worlds at the edge of our solar system.

image

The spacecraft is now venturing deeper into the distant, mysterious Kuiper Belt…a relic of solar system formation…to reach its next target. On New Year’s Day 2019, New Horizons will zoom past a Kuiper Belt object known as 2014 MU69.

image

The Kuiper Belt is a disc-shaped region of icy bodies – including dwarf planets such as Pluto – and comets beyond the orbit of Neptune. It extends from about 30 to 55 Astronomical Units (an AU is the distance from the sun to Earth) and is probably populated with hundreds of thousands of icy bodies larger than 62 miles across, and an estimated trillion or more comets.

image

Nearly a billion miles beyond Pluto, you may be asking how the spacecraft will function for the 2014 MU69 flyby. Well, New Horizons was originally designed to fly far beyond the Pluto system and explore deeper into the Kuiper Belt. 

image

The spacecraft carries extra hydrazine fuel for the flyby; its communications system is designed to work from beyond Pluto; its power system is designed to operate for many more years; and its scientific instruments were designed to operate in light levels much lower than it will experience during the 2014 MU69 flyby.

What have we learned about Pluto since its historic flyby in 2015?

During its encounter, the New Horizons spacecraft collected more than 1,200 images of Pluto and tens of gigabits of data. The intensive downlinking of information took about a year to return to Earth! Here are a few things we’ve discovered:

Pluto Has a Heart

image

This image captured by New Horizons around 16 hours before its closest approach shows Pluto’s “heart.” This stunning image of one of its most dominant features shows us that the heart’s diameter is about the same distance as from Denver to Chicago. This image also showed us that Pluto is a complex world with incredible geological diversity.

Icy Plains

image

Pluto’s vast icy plain, informally called Sputnik Planitia, resembles frozen mud cracks on Earth. It has a broken surface of irregularly-shaped segments, bordered by what appear to be shallow troughs.

Majestic Mountains

image

Images from the spacecraft display chaotically jumbled mountains that only add to the complexity of Pluto’s geography. The rugged, icy mountains are as tall as 11,000 feet high.

Color Variations

image

This high-resolution enhanced color view of Pluto combines blue, red and infrared images taken by the New Horizons spacecraft. The surface of Pluto has a remarkable range of subtle color variations. Many landforms have their own distinct colors, telling a complex geological and climatological story.

Foggy Haze and Blue Atmosphere

image

Images returned from the New Horizons spacecraft have also revealed that Pluto’s global atmospheric haze has many more layers than scientists realized. The haze even creates a twilight effect that softly illuminates nightside terrain near sunset, which makes them visible to the cameras aboard the spacecraft.

Water Ice

image

New Horizons detected numerous small, exposed regions of water ice on Pluto. Scientists are eager to understand why water appears exactly where it does, and not in other places.

Stay updated on New Horizons findings by visiting the New Horizons page. You can also keep track of Pluto News on Twitter via @NASANewHorizons.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

5 years ago

Apollo 12: The Next Step after the Giant Leap

Launched less than four months after Apollo 11 put the first astronauts on the Moon, Apollo 12 was more than a simple encore. After being struck by lightning on launch -- to no lasting damage, fortunately -- Apollo 12 headed for a rendezvous with a spacecraft that was already on the Moon. The mission would expand the techniques used to explore the Moon and show the coordination between robotic and human exploration, both of which continue today as we get return to return astronauts to the Moon by 2024. 

Launch Day

image

Apollo 12 lifted off at 11:22 a.m. EST, Nov. 14, 1969, from our Kennedy Space Center. Aboard the Apollo 12 spacecraft were astronauts Charles Conrad Jr., commander; Richard F. Gordon Jr., command module pilot; and Alan L. Bean, lunar module pilot.

Barely 40 seconds after liftoff, lightning struck the spacecraft. Conrad alerted Houston that the crew had lost telemetry and other data from the mission computers. As the Saturn V engines continued to push the capsule to orbit, ground controllers worked out a solution, restarting some electrical systems, and Apollo 12 headed toward the Moon.

image

Cameras at the Kennedy Space Center captured this image of the same lightning bolt that struck Apollo 12 striking the mobile platform used for the launch.

On the Moon

Apollo 12 landed on the Moon on Nov. 19, and on the second moonwalk Conrad and Bean walked approximately 200 yards to the Surveyor 3 spacecraft. One of seven Surveyor spacecraft sent to land on the Moon and to gather data on the best way to land humans there, Surveyor 3 had been on the Moon for more than two years, exposed to cosmic radiation and the vacuum of space. Scientists on the ground wanted to recover parts of the spacecraft to see what effects the environment had had on it.

image

Apollo 12 commander Pete Conrad examines the Surveyor 3 spacecraft before removing its camera and other pieces for return to Earth. In the background is the lunar module that landed Conrad and lunar module pilot Alan Bean on the Moon.

Splashdown

image

Apollo 12 splashed down on Nov. 24. When Artemis returns astronauts to the Moon in 2024, it will be building on Apollo 12 as much as any of the other missions. Just as Apollo 12 had to maneuver off the standard “free return” trajectory to reach its landing site near Surveyor, Artemis missions will take advantage of the Gateway to visit a variety of lunar locations. The complementary work of Surveyor and Apollo -- a robotic mission preparing the way for a crewed mission; that crewed mission going back to the robotic mission to learn more from it -- prefigures how Artemis will take advantage of commercial lunar landers and other programs to make lunar exploration sustainable over the long term.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago

The One-Year Mission

First off, what is the One-Year Crew? Obviously, they’re doing something for a year, but what, and why?

Two crew members on the International Space Station have just met the halfway point of their year in space. NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko are living in space for 342 days and will help us better understand the effects of microgravity on the human body.

Why 342 days and not 365? Thought you might ask. Due to crew rotation schedules, which involve training timelines and dictate when launches and landings occur, the mission was confined to 342 days. Plenty of time to conduct great research though!

image

The studies performed throughout their stay will yield beneficial knowledge on the medical, psychological and biomedical challenges faced by astronauts during long-duration spaceflight.

The weightlessness of the space environment has various effects on the human body, including: Fluid shifts that cause changes in vision, rapid bone loss, disturbances to sensorimotor ability, weakened muscles and more.

The goal of the One-Year Mission is to understand and minimize these effects on humans while in space.

The Twins Study

image

A unique investigation that is being conducted during this year in space is the Twins Study. NASA Astronaut Scott Kelly’s twin brother Mark Kelly will spend the year on Earth while Scott is in space. Since their genetic makeup is as close to identical as we can get, this allows a unique research perspective. We can now compare all of the results from Scott Kelly in space to his brother Mark on Earth.

But why are we studying all of this? If we want to move forward with our journey to Mars and travel into deep space, astronauts will need to live in microgravity for long periods of time. In order to mitigate the effects of long duration spaceflight on the human body, we need to understand the causes. The One-Year mission hopes to find these answers.

Halfway Point

image

Today, September 15 marks the halfway point of their year in space, and they now enter the final stretch of their mission. 

Here are a few fun tidbits on human spaceflight to put things in perspective:

1) Scott Kelly has logged 180 days in space on his three previous flights, two of which were Space Shuttle missions. 

2) The American astronaut with the most cumulative time in space is Mkie Fincke, with 382 days in space on three flights. Kelly will surpass this record for most cumulative time in space by a U.S. astronaut on October 16.

3) Kelly will pass Mike Lopez-Alegria’s mark for most time on a single spaceflight (215 days) on October 29.

4) By the end of this one-year mission, Kelly will have traveled for 342 days, made 5,472 orbits and traveled 141.7 million miles in a single mission. 

Have you seen the amazing images that Astronaut Scott Kelly has shared during the first half of his year in space? Check out this collection, and also follow him on social media to see what he posts for the duration of his #YearInSpace: Facebook, Twitter, Instagram. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Neutron Stars Are Even Weirder Than We Thought

Let’s face it, it’s hard for rapidly-spinning, crushed cores of dead stars NOT to be weird. But we’re only beginning to understand how truly bizarre these objects — called neutron stars — are.

image

Neutron stars are the collapsed remains of massive stars that exploded as supernovae. In each explosion, the outer layers of the star are ejected into their surroundings. At the same time, the core collapses, smooshing more than the mass of our Sun into a sphere about as big as the island of Manhattan.

image

Our Neutron star Interior Composition Explorer (NICER) telescope on the International Space Station is working to discover the nature of neutron stars by studying a specific type, called pulsars. Some recent results from NICER are showing that we might have to update how we think about pulsars!

Here are some things we think we know about neutron stars:

Pulsars are rapidly spinning neutron stars ✔︎

Pulsars get their name because they emit beams of light that we see as flashes. Those beams sweep in and out of our view as the star rotates, like the rays from a lighthouse.

image

Pulsars can spin ludicrously fast. The fastest known pulsar spins 43,000 times every minute. That’s as fast as blender blades! Our Sun is a bit of a slowpoke compared to that — it takes about a month to spin around once.

The beams come from the poles of their strong magnetic fields ✔︎

Pulsars also have magnetic fields, like the Earth and Sun. But like everything else with pulsars, theirs are super-strength. The magnetic field on a typical pulsar is billions to trillions of times stronger than Earth’s!

image

Near the magnetic poles, the pulsar’s powerful magnetic field rips charged particles from its surface. Some of these particles follow the magnetic field. They then return to strike the pulsar, heating the surface and causing some of the sweeping beams we see.

The beams come from two hot spots… ❌❓✔︎ 🤷🏽

Think of the Earth’s magnetic field — there are two poles, the North Pole and the South Pole. That’s standard for a magnetic field.

image

On a pulsar, the spinning magnetic field attracts charged particles to the two poles. That means there should be two hot spots, one at the pulsar’s north magnetic pole and the other at its south magnetic pole.

This is where things start to get weird. Two groups mapped a pulsar, known as J0030, using NICER data. One group found that there were two hot spots, as we might have expected. The other group, though, found that their model worked a little better with three (3!) hot spots. Not two.

… that are circular … ❌❓✔︎ 🤷🏽

The particles that cause the hot spots follow the magnetic field lines to the surface. This means they are concentrated at each of the magnetic poles. We expect the magnetic field to appear nearly the same in any direction when viewed from one of the poles. Such symmetry would produce circular hot spots.

image

In mapping J0030, one group found that one of the hot spots was circular, as expected. But the second spot may be a crescent. The second team found its three spots worked best as ovals.

… and lie directly across from each other on the pulsar ❌❓✔︎ 🤷🏽

Think back to Earth’s magnetic field again. The two poles are on opposite sides of the Earth from each other. When astronomers first modeled pulsar magnetic fields, they made them similar to Earth’s. That is, the magnetic poles would lie at opposite sides of the pulsar.

image

Since the hot spots happen where the magnetic poles cross the surface of the pulsar, we would expect the beams of light to come from opposite sides of the pulsar.

image

But, when those groups mapped J0030, they found another surprising characteristic of the spots. All of the hot spots appear in the southern half of the pulsar, whether there were two or three of them.

image

This also means that the pulsar’s magnetic field is more complicated than our initial models!

J0030 is the first pulsar where we’ve mapped details of the heated regions on its surface. Will others have similarly bizarre-looking hotspots? Will they bring even more surprises? We’ll have to stay tuned to NICER find out!

And check out the video below for more about how this measurement was done.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago
A Cluster Of Newborn Stars Herald Their Birth In This Interstellar Picture Obtained With Our Spitzer

A cluster of newborn stars herald their birth in this interstellar picture obtained with our Spitzer Space Telescope. These bright young stars are found in a rosebud-shaped (and rose-colored) nebulosity. The star cluster and its associated nebula are located at a distance of 3300 light-years in the constellation Cepheus.

A recent census of the cluster reveals the presence of 130 young stars. The stars formed from a massive cloud of gas and dust that contains enough raw materials to create a thousand Sun-like stars. In a process that astronomers still poorly understand, fragments of this molecular cloud became so cold and dense that they collapsed into stars. Most stars in our Milky Way galaxy are thought to form in such clusters.

The Spitzer Space Telescope image was obtained with an infrared array camera that is sensitive to invisible infrared light at wavelengths that are about ten times longer than visible light. In this four-color composite, emission at 3.6 microns is depicted in blue, 4.5 microns in green, 5.8 microns in orange, and 8.0 microns in red. The image covers a region that is about one quarter the size of the full moon.

As in any nursery, mayhem reigns. Within the astronomically brief period of a million years, the stars have managed to blow a large, irregular bubble in the molecular cloud that once enveloped them like a cocoon. The rosy pink hue is produced by glowing dust grains on the surface of the bubble being heated by the intense light from the embedded young stars. Upon absorbing ultraviolet and visible-light photons produced by the stars, the surrounding dust grains are heated and re-emit the energy at the longer infrared wavelengths observed by Spitzer. The reddish colors trace the distribution of molecular material thought to be rich in hydrocarbons.

The cold molecular cloud outside the bubble is mostly invisible in these images. However, three very young stars near the center of the image are sending jets of supersonic gas into the cloud. The impact of these jets heats molecules of carbon monoxide in the cloud, producing the intricate green nebulosity that forms the stem of the rosebud.

Not all stars are formed in clusters. Away from the main nebula and its young cluster are two smaller nebulae, to the left and bottom of the central 'rosebud,'each containing a stellar nursery with only a few young stars.

Astronomers believe that our own Sun may have formed billions of years ago in a cluster similar to this one. Once the radiation from new cluster stars destroys the surrounding placental material, the stars begin to slowly drift apart.

Additional information about the Spitzer Space Telescope is available at http://www.spitzer.caltech.edu.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
8 years ago

What’s Up for March 2017?

What’s Up for March? The moon hides red star Aldebaran and crescents dazzle after dusk.

What’s Up For March 2017?

On March 4 the first quarter moon passes between Earth and the star Aldebaran, temporarily blocking our view of the star. This is called an occultation. 

What’s Up For March 2017?

The occultation begins and concludes at different times, depending on where you are when you view it.

What’s Up For March 2017?

The event should be easy to see from most of the U.S., Mexico, most of Central America, the Western Caribbean and Bermuda. 

What’s Up For March 2017?

Observers along a narrow path from Vancouver, British Columbia, to Hartford, Connecticut, will see the moon “graze” the star. The star will disappear and reappear repeatedly as hills and valleys on the moon alternately obscure and reveal it.

What’s Up For March 2017?

As seen from Earth, both Mercury and Venus have phases like our moon. That’s because they circle the sun inside Earth’s orbit. 

What’s Up For March 2017?

Planets that orbit between Earth and the sun are known as inner or inferior planets.

What’s Up For March 2017?

Inferior planets can never be at “opposition,” which is when the planet and the sun are on opposite sides of Earth.

What’s Up For March 2017?

But inferior planets can be at “conjunction,” which is when a planet, the sun and Earth are all in a straight line. 

What’s Up For March 2017?

Conjunction can happen once when the planet is on the opposite side of the sun from Earth and again when it’s on the same side of the sun as Earth. 

What’s Up For March 2017?

When a planet is on the opposite side of the sun from Earth, we say it is at “superior conjunction.” As the planet moves out from behind the sun and gets closer to Earth, we see less and less of the lit side. We see phases, similar to our moon’s phases. 

What’s Up For March 2017?

Mercury is at superior conjunction on March 6. 

What’s Up For March 2017?

A few weeks later, the planet emerges from behind the sun and we can once again observe it. By the end of March we’ll see a last-quarter Mercury.

What’s Up For March 2017?

 On April 20 Mercury reaches “inferior conjunction.”

What’s Up For March 2017?

Brilliant Venus is also racing toward its own inferior conjunction on March 25. Watch its crescent get thinner and thinner as the planet’s size appears larger and larger, because it is getting closer to Earth.

What’s Up For March 2017?

Finally, look for Jupiter to rise in the East. It will be visible all month long from late evening until dawn.

What’s Up For March 2017?

You can catch up on solar system missions and all of our missions at www.nasa.gov

Watch the full “What’s Up for March 2017″ video here: 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

5 Examples of How Our Satellite Data is Helping the Planet

We could talk all day about how our satellite data is crucial for Earth science…tracking ocean currents, monitoring natural disasters, soil mapping – the list goes on and on.

But did you know there is another way this data can improve life here on Earth?

image

Our satellite data can be used to build businesses and commercial products – but finding and using this data has been a daunting task for many potential users because it’s been stored across dozens of websites.

Until now.

Our Technology Transfer program has just released their solution to make finding data easier, called The NASA Remote Sensing Toolkit (RST).

image

RST offers an all-in-one approach to finding and using our Earth Science data, the tools needed to analyze it, and software to build your own tools.  

Before, we had our petabytes on petabytes of information spread out across dozens of websites – not to mention the various software tools needed to interpret the data. 

image

Now, RST helps users find everything they need while having only one browser open.

Feeling inspired to innovate with our data? Here are just a few examples of how other companies have taken satellite data and turned it into products, known as NASA spinoffs, that are helping our planet today.

1. Bringing Landscape into Focus

image

We have a number of imaging systems for locating fires, but none were capable of identifying small fires or indicating the flames’ intensity. Thanks to a series of Small Business Innovation Research (SBIR) contracts between our Ames Research Center and Xiomas Technologies LLC, the Wide Area Imager aerial scanner does just that. While we and the U.S. Forest Service use it for fire detection, the tool is also being used by municipalities for detailed aerial surveillance projects.

2. Monitoring the Nation’s Forests with the Help of Our Satellites

image

Have you ever thought about the long-term effects of natural disasters, such as hurricanes, on forest life? How about the big-time damage caused by little pests, like webworms? 

Our Stennis Space Center did, along with multiple forest services and environmental threat assessment centers. They partnered to create an early warning system to identify, characterize, and track disturbances from potential forest threats using our satellite data. The result was ForWarn, which is now being used by federal and state forest and natural resource managers.

3. Informing Forecasts of Crop Growth

image

Want to hear a corny story?

Every year Stennis teams up with the U.S. Department of Agriculture to host a program called Ag 20/20 to utilize remote sensing technology for operational use in agricultural crop management practices at the level of individual farms. During Ag 20/20 in 2000, an engineering contractor developed models for using our satellite data to predict corn crop yield. The model was eventually sold to Genscape Inc., which has commercialized it as LandViewer. Sold under a subscription model, LandViewer software provides predictions of corn production to ethanol plants and grain traders.

4. Water Mapping Technology Rebuilds Lives in Arid Regions

image

No joking around here. Lives depend on the ability to find precious water in areas with little of it.  

Using our Landsat satellite and other topographical data, Radar Technologies International developed an algorithm-based software program that can locate underground water sources. Working with international organizations and governments, the firm is helping to provide water for refugees and other people in drought-stricken regions such as Kenya, Sudan, and Afghanistan.

5. Satellite Maps Deliver More Realistic Gaming

image

Are you more of the creative type? This last entry used satellite data to help people really get into their gameplay.

When Electronic Arts (EA) decided to make SSX, a snowboarding video game, it faced challenges in creating realistic-looking mountains. The solution was our ASTER Global Digital Elevation Map, made available by our Jet Propulsion Laboratory, which EA used to create 28 real-life mountains from 9 different ranges for its award-winning game.

You can browse our Remote Sensing Toolkit at technology.nasa.gov.

Want to know more about future tutorial webinars on RST?

Follow our Technology Transfer Program on twitter @NASAsolutions for the latest updates.

Want to learn more about the products made by NASA technologies? Head over to spinoff.nasa.gov.

Sign up to receive updates about upcoming tutorials HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
7 years ago

A Hitchhiker’s Ride to Space

This month, we are set to launch the latest weather satellite from the National Oceanic and Atmospheric Administration (NOAA). The Joint Polar Satellite System-1, or JPSS-1, satellite will provide essential data for timely and accurate weather forecasts and for tracking environmental events such as forest fires and droughts.

image

Image Credit: Ball Aerospace

JPSS-1 is the primary satellite launching, but four tiny satellites will also be hitchhiking a ride into Earth orbit. These shoebox-sized satellites (part of our CubeSat Launch Initiative) were developed in partnership with university students and used for education, research and development. Here are 4 reasons why MiRaTA, one of the hitchhikers, is particularly interesting…

image

Miniaturized Weather Satellite Technology

The Microwave Radiometer Technology Acceleration (MiRaTA) CubeSat is set to orbit the Earth to prove that a small satellite can advance the technology necessary to reduce the cost and size of future weather satellites. At less than 10 pounds, these nanosatellites are faster and more cost-effective to build and launch since they have been constructed by Principal Investigator Kerri Cahoy’s students at MIT Lincoln Laboratory (with lots of help). There’s even a chance it could be put into operation with forecasters.

image

The Antenna? It’s a Measuring Tape

That long skinny piece coming out of the bottom right side under MiRaTA’s solar panel? That’s a measuring tape. It’s doubling as a communications antenna. MiRaTA will measure temperature, water vapor and cloud ice in Earth’s atmosphere. These measurements are used to track major storms, including hurricanes, as well as everyday weather. If this test flight is successful, the new, smaller technology will likely be incorporated into future weather satellites – part of our national infrastructure.

image

Tiny Package Packing a Punch MiRaTA will also test a new technique using radio signals received from GPS satellites in a higher orbit. They will be used to measure the temperature of the same volume of atmosphere that the radiometer is viewing. The GPS satellite measurement can then be used for calibrating the radiometer. “In physics class, you learn that a pencil submerged in water looks like it’s broken in half because light bends differently in the water than in the air,” Principal Investigator Kerri Cahoy said. “Radio waves are like light in that they refract when they go through changing densities of air, and we can use the magnitude of the refraction to calculate the temperature of the surrounding atmosphere with near-perfect accuracy and use this to calibrate a radiometer.” 

image

What’s Next?

In the best-case scenario, three weeks after launch MiRaTA will be fully operational, and within three months the team will have obtained enough data to study if this technology concept is working. The big goal for the mission—declaring the technology demonstration a success—would be confirmed a bit farther down the road, at least half a year away, following the data analysis. If MiRaTA’s technology validation is successful, Cahoy said she envisions an eventual constellation of these CubeSats orbiting the entire Earth, taking snapshots of the atmosphere and weather every 15 minutes—frequent enough to track storms, from blizzards to hurricanes, in real time.

Learn more about MiRaTA

Watch the launch!

image

The mission is scheduled to launch this month (no sooner than Nov. 14), with JPSS-1 atop a United Launch Alliance (ULA) Delta II rocket lifting off from Space Launch Complex 2 at Vandenberg Air Force Base in California. You’ll be able to watch on NASA TV or at nasa.gov/live.

image

Watch the launch live HERE on Nov. 14, liftoff is scheduled for Tuesday, 4:47 a.m.! 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
4 years ago

A Total Solar Eclipse Over South America

On Dec. 14, 2020, a total solar eclipse will pass over Chile and Argentina.

image

Solar eclipses happen when the Moon lines up just right between the Sun and Earth, allowing it to cast its shadow on Earth’s surface. People within the outer part of the Moon’s shadow will see the Sun partially blocked by the Moon, and those in the inner part of the shadow will see a total solar eclipse.

image

The Moon’s orbit around Earth is slightly tilted, meaning this alignment doesn’t happen on every orbit. Total solar eclipses happen somewhere on Earth about once every 18 months.

image

During a total solar eclipse, the Moon blocks out the Sun’s bright face, revealing its comparatively faint outer atmosphere, the corona. This provides Sun-watchers and scientists alike with a rare chance to see the solar corona closer to the Sun’s surface than is usually possible.

image

Scientists can take advantage of this unparalleled view — and solar eclipses’ unique effects on Earth’s atmosphere — to perform unique scientific studies on the Sun and its effects on Earth. Several NASA-funded science teams performed such studies during the total solar eclipse in the United States on Aug. 21, 2017. Read about what they’ve learned so far.

Watching the eclipse

We’ll be carrying images of December’s eclipse — courtesy of Pontificia Universidad Católica de Chile — on NASA TV and on the agency’s website starting at 9:40 a.m. EST on Dec. 14.

We’ll also have a live show in Spanish from 10:30 – 11:30 a.m. EST featuring views of the eclipse and NASA scientists.

If you’re observing the eclipse in person, remember that it’s never safe to look directly at the uneclipsed or partially eclipsed Sun. You can use special solar viewing glasses (NOT sunglasses) or an indirect method like pinhole projection to watch the eclipse in person.

image

For people in the path of totality, there will be a few brief moments when it is safe to look directly at the eclipse. Only once the Moon has completely covered the Sun and there is no sunlight shining is it safe to look at the eclipse. Make sure you put your eclipse glasses back on or return to indirect viewing before the first flash of sunlight appears around the Moon’s edge.

Mira el eclipse en vivo comentado por científicas de la NASA de 10:30 a 11:30 a.m. EST el 14 de diciembre en NASA TV y la página web de la agencia. Lee más sobre el eclipse y cómo observarlo de forma segura aquí: https://ciencia.nasa.gov/eclipse-de-2020-en-america-del-sur Y sigue a NASA en español en Instagram, Twitter, YouTube y Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

Solar System: Things to Know This Week

Follow our Juno craft during a close flyby of Jupiter, learn about Cassini’s final mission during a Facebook live event (in case you missed it) and more!

image

1. Jupiter, Up Close

Our Juno mission completed a close flyby of Jupiter on Thursday, February 2, its latest science orbit of the mission. All of Juno's science instruments and the spacecraft's JunoCam were operating during the flyby to collect data that is now being returned to Earth. 

image

Want to know more? Using NASA's Eyes on the Solar System and simulated data from the Juno flight team you can ride onboard the Juno spacecraft in real-time at any moment during the entire mission.

image

2. In Case You Missed It--Cassini Facebook Live

Cassini Project Scientist Linda Spilker and mission planner Molly Bittner take questions about the mission's "Ring-Grazing" orbits during Facebook Live. Watch it now: www.facebook.com/NASA/videos/10154861046561772/

image

3. Cassini Scientist for a Day Essay Contest 

The deadline is Friday, February 24 for U.S. student in grades 5 to 12. For international students, visit the page for more info! 

More: solarsystem.nasa.gov/educ/Scientist-For-a-Day/2016-17/videos/intro

image

4. Cassini Spies Dione

Dione's lit hemisphere faces away from Cassini's camera, yet the moon's darkened surface are dimly illuminated in this image, due to the phenomenon of Saturnshine. Although direct sunlight provides the best illumination for imaging, light reflected off of Saturn can do the job as well. In this image, Dione (698 miles or 1,123 kilometers across) is above Saturn's day side, and the moon's night side is faintly illuminated by sunlight reflected off the planet's disk.

Discover the full list of 10 things to know about our solar system this week HERE.

Follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
3 years ago

Which Landsat Image Do You Love?

Feeling competitive? We’ve got a game for you to play in! Tournament Earth: The Landsat Games is happening right now, and as we get to the final entries, the competition is heating up.

Which Landsat Image Do You Love?

You can help us pick the winner by voting for one of the remaining four Landsat images of our home planet! Our competition started with 32 images, divided into categories by what they show: land, water, ice & snow, and human impact.

So, what do you think? Which one of these images is going for gold?

Land

First up, we have an image of the Markha River and surrounding Central Siberian Plateau, acquired in 2020 by Landsat 8. The hypnotic undulations of striping across the landscape carried this image to victory over the rest of the Land images -- a particularly tough category, given that these images all come from Landsat.

Which Landsat Image Do You Love?

Water

It’s not all land, though! The bright blues and greens of this false-color image of the Atchafalaya Delta in Louisiana helped carry it to victory in the Water category. The image, taken in 2020 by Landsat 8, shows a region that’s subject to erosion of land by wind and rising sea levels.

Which Landsat Image Do You Love?

Ice & Snow

Brrr! Did it get cold in here? That’s the finalist from the Ice and Snow category, an image of sea ice around Russia’s New Siberian Islands. The image, collected by Landsat 8 in June 2016, shows sea ice during its annual seasonal breakup.

Which Landsat Image Do You Love?

Human Impact

Humans have been shaping the planet around us for hundreds of years. Some changes, like rice fields in the Sacramento Valley, are visible from space. Landsat 8 collected this false-color image of flooded rice fields in December 2018.

Which Landsat Image Do You Love?

So, now it’s up to you! Which image is your favorite? There can only be one winner of Tournament Earth: The Landsat Games. Get your vote in, and then get ready to watch as we launch the next Landsat satellite, Landsat 9, in September.

Which Landsat Image Do You Love?

The Landsat mission is a partnership between us at NASA and the U.S. Geological Survey. Together, we’ve been using Landsat satellites to collect nearly 50 years of images of our home planet.

Make sure to follow us on Tumblr for your regular dose of space.


Tags
Loading...
End of content
No more pages to load
  • nostalgicproteinbag
    nostalgicproteinbag liked this · 4 years ago
  • undead-gay-astronaut
    undead-gay-astronaut reblogged this · 4 years ago
  • taking-notes-for-art
    taking-notes-for-art reblogged this · 4 years ago
  • dragonflysobright-seethemfly
    dragonflysobright-seethemfly liked this · 4 years ago
  • enoch-solomon
    enoch-solomon reblogged this · 4 years ago
  • beyondsundown
    beyondsundown liked this · 4 years ago
  • cityhunterblog
    cityhunterblog liked this · 5 years ago
  • marycielo25
    marycielo25 liked this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags