It's Launch Day! 

It's Launch Day! 

It's Launch Day! 

Final preparations are underway for today's 5:55 p.m. EDT launch of the eleventh SpaceX cargo resupply mission to the International Space Station  from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The SpaceX Dragon spacecraft will liftoff into orbit atop the Falcon 9 rocket carrying about 6,000 pounds of crew supplies, equipment and scientific research to crewmembers living aboard the station. The flight will deliver investigations and facilities that study neutron stars, osteoporosis, solar panels, tools for Earth-observation, and more. Watch live coverage starting today at 5:15pm ET at http://www.nasa.gov/live

Learn more about the mission and launch at http://www.nasa.gov/spacex

Image credit: NASA/Bill Ingalls

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

9 years ago

Solar System: Top 5 Things to Know This Week

It’s only Tuesday and this week is already filled with news about our solar system. Here are the top five things to know this week:

1) Mars!

image

With five spacecraft in orbit and two rovers exploring the ground, there’s always something new and interesting about the Red Planet. Yesterday things got even more exciting when we released the most compelling evidence yet that liquid water sometimes flows on Mars today.

2) HTV-5 Cargo Ship

image

On Monday, the HTV-5 cargo ship was released from the International Space Station to burn up as it reenters Earth’s atmosphere. The HTV-5 carried a variety of experiments and supplies to the space station, and was docked for five weeks.

3) Pluto Continues to Excite

image

If you haven’t been keeping up with the weekly releases of newly downloaded pictures from our New Horizons spacecraft, you are definitely missing out. But don’t worry, we have you covered. The latest updates can be found HERE, be sure to follow along as new information is released. More images are scheduled to be featured on Oct. 1.

4) Cassini Mission

image

This week on Sept. 30, our Cassini spacecraft will reach the closest point to Saturn in it’s latest orbit around the planet. Just to put things in perspective, that will be Cassini’s 222nd orbit around Saturn! Learn more about this mission HERE.

5) What Happened to Mars’ Atmosphere?

image

Believe it or not, the Martian atmosphere we see today used to be much more substantial many years ago. What happened? Our Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has been in orbit around Mars for one Earth year, searching for the answers. Learn more HERE.

Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com


Tags
8 years ago

Solar System: Things to Know This Week

Special Edition: Viking 40th Anniversary

image

Mars is hard. Forty years ago this week, our Viking mission found a place in history when it became the first U.S. mission to land a spacecraft safely on the surface of Mars and return images of the surface. This is astonishing considering that many of the spacecraft destined for Mars failed before completing their missions and some failed before their observations could begin.

Here’s a few things to know about the Viking missions that ushered in a new era of Mars explorations 40 years ago:

1. Multi Mission

image

The Viking mission consisted of four spacecraft – two orbiters and two landers. All four made significant science discoveries.

2. Last Minute Switch

image

The spacecraft eventually named Viking 2 was supposed to launch first, but a battery problem prompted us to send the second spacecraft first. Batteries recharged, Viking 2 was then sent to rendezvous with the Red Planet.

3. Not Quite the First

image

Viking 1 was the first to send back science from the surface of Mars, but the honor of the first Mars landing goes to the Soviet Union’s Mars 3. The Soviet spacecraft landed on Mars in December 1970, but sent back only 20 seconds of video data before going silent.

4. Viking 1 Quick Stats

image

Viking 1 was launched Aug. 20 1975, and arrived at Mars on June 19, 1976. On July 20, 1976, the Viking 1 lander separated from the orbiter and touched down at Chryse Planitia.

5. Viking 2 Quick Stats

image

Viking 2 was launched Sept. 9, 1975, and entered Mars orbit Aug. 7, 1976. The Viking 2 lander touched down at Utopia Planitia on Sept. 3, 1976.

image

For more information about the Viking missions, and to celebrate the 40th anniversary, check out our list of events HERE.

Discover the full list of 10 things to know about our solar system this week HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Does an ecplispe cause any unusual effects on the Earth?

Yes, and this is one of the things we’re hoping to study more with this eclipse! If you are in totality, you’ll notice a significant temperature drop. We are also expecting to see changes in the Earth’s atmosphere and ionosphere. You can help us document these changes using the GLOBE Observer app https://www.globe.gov/globe-data/data-entry/globe-observer ! There are lots of great citizen science going on during this eclipse, and we’d love to have everyone here helping out! https://eclipse2017.nasa.gov/citizen-explorers


Tags
7 years ago

The Birth of a New Island

image

In late December 2014, an underwater volcano in the South Pacific Kingdom of Tonga erupted and sent a violent stream of steam, ash and rock into the air. The ash plumes rose as high as 30,000 feet (9 kilometers) into the sky and diverted airline flights.

Most new oceanic islands often wash away quickly within a few months. The island doesn't have an official name, and is referred to as Hunga Tonga-Hunga Ha'apai after two older islands to either side.

But this island was different. One of our satellites that detects volcanic eruptions alerted our scientists who were very excited because this type of explosive, undersea eruption is rare. In fact, the new Tongan island is one of only three of this kind of volcanic islands in the past 150 years to emerge and survive. It's now three years old.

Zooming in from Space

image

The baby island is also the first of its kind to emerge in the modern satellite era. This is really important since it's difficult to send our researchers the South Pacific every month to see how the island has changed – which it did very rapidly, especially in the first six months. But satellites in space delivered monthly views which we used to make these high resolution, 3-D topographic maps. With these maps, we tracked the early life and evolution of the island in unprecedented detail.

image

In April 2015, we watched an isthmus bridge begin forming from the new island to the older island neighboring it to the east. Soft volcanic material, especially on the island's southern side, was eroded by the ocean and deposited on the tail end, which grew and grew till it reached the other island. It's about 1600 feet (500 meters) across, or the length of 5 football fields.

image

The erosive forces of the ocean broke down the southern wall of the crater lake in May 2015. We thought this might mean that the island wouldn't last much longer because the ocean could now attack the interior of the island's tuff cone. But in June, a sandbar formed, closing off the lake again and protecting the interior. The sandbar has been in place ever since.

Monitoring these changes of both erosion and growth, we now believe that the island will last from between 6 to 30 years!

Terranauts!

image

Why has the island survived for three years? What makes eroding it away harder than for other blink-and-you-miss-it oceanic islands that disappear into the sea after a few months? To answer these questions, we need rock samples.

Working with the Tongan government, we recruited two French citizens sailing around the world who were in Tongan waters in June, 2017, to go to the new island on our behalf. We treated them like astronauts and gave them instructions to take pictures and samples of the volcanic rocks at locations we could see from space along the coasts, the interior of the crater lake, and from the top of the tuff cone.

image

They did a fantastic job documenting each sample and where it came from, and then mailed the box of rocks back to our team at our Goddard Space Flight Center in Greenbelt, Maryland, where they are currently being analyzed. We believe that after the eruption, warm seawater mixed with volcanic ash to chemically alter it so that when it hardened into rock it was a tougher material. We're excited to see if the rock samples confirm this.

From Earth to Mars

image

Link: https://svs.gsfc.nasa.gov/11372

Did these Martian volcanoes form in an ocean or lake? If they did, wet environments such as these combined with heat from volcanic processes may be prime locations to search for evidence of past life. We may not know until we arrive on the red planet, but by studying Earth's landforms, we'll be better prepared when we do.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago

State of NASA

Over his tenure, President Obama has now invested $147 billion in America’s space program. Our elected leaders, on a bipartisan basis, have chosen to make this investment in our Agency, because they believe in our Journey to Mars and recognize that investments in NASA’s present are investments in America’s future.

Because the State of our NASA is strong, President Obama is recommending a $19 billion budget for the next year to carry out our ambitious exploration and scientific discovery plans. Here are the areas in which we’ll continue to invest:

Solar System and Beyond

image

As we explore our solar system and search for new worlds, we look to answer key questions about our home planet, neighboring planets in our solar system and the universe beyond.

Journey to Mars

image

We’re developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Mars is a rich destination for scientific discovery and robotic and human exploration as we expand our presence into the solar system. Its formation and evolution are comparable to Earth, helping us learn more about our own planet’s history and future.

International Space Station

image

Earth Right Now

image

We use the vantage point of space to increase our understanding of our home planet, improve lives and safeguard our future. Our Earth science work also makes a difference in people’s lives around the world every day.

Technology Drives Exploration

image

Sustained investments in our technology advance space exploration, science and aeronautics capabilities. We seek to improve our ability to access and travel through space; land more mass in more locations throughout our solar system; live and work in deep space and on planetary bodies; build next generation air vehicles, and transform the ability to observe the universe and answer profound questions in Earth and space sciences.

Aeronautics

image

Thanks to advancements in aeronautics developed by NASA, today’s aviation industry is better equipped than ever to safely and efficiently transport all those passengers to their destinations. 

image

The President’s FY 2017 budget provides $790 million to our Aeronautics Research Mission Directorate. This investment will accelerate aviation energy efficiency, advance propulsion system transformation and enable major improvements in aviation safety and mobility. The future of flight will: utilize greener energy, be half as loud, use half the fuel and will create quieter sonic booms.

State of NASA Social

image

Today, we have opened our doors and invited social media followers and news media to an in-person event, at one of our 10 field centers. Guests will go on a tour and see highlights of the work we’re doing. You can follow along digitally on Twitter: https://twitter.com/NASASocial/lists/state-of-nasa-all1. 

Check our Twitter Moment HERE.

Did you miss NASA Administrator Bolden’s remarks? You can watch a full recap HERE. 

For all budget related items, visit: http://www.nasa.gov/news/budget/index.html

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago

Pioneering with Perseverance: More Technology Firsts

From launching the largest, heaviest, most sophisticated vehicle we have ever sent to Mars, to its elegant landing at Jezero Crater – a treacherous yet promising location for finding signs of ancient life – the journey of our Perseverance rover has already been and continues to be a bold one.

Pioneering With Perseverance: More Technology Firsts

But let’s not forget, building new tools and instruments or designing ways to study other worlds is not easy. Before engineers even dreamt of sending their hardware for a spin on Mars, they spent years doing all they could to validate tech on Earth – modeling in labs, flying experiments on suborbital rockets or high-altitude balloons, or testing in various facilities to simulate the harsh conditions of space.

Pioneering With Perseverance: More Technology Firsts

We know that technology demonstrations – that test a new capability in space – can be risky, but trying new things is how we forge ahead, learn for future missions, and reach new heights in space.

Perseverance has already accomplished some amazing “firsts” but there are more to come. Here are four more trailblazing technologies on the Mars 2020 mission.

1. First Powered Flight on Another World

This week, the Ingenuity Mars Helicopter, a small, autonomous rotorcraft originally stowed beneath the rover, will make the first-ever attempt at powered, controlled flight of an aircraft on another planet.

In the last few weeks, Ingenuity safely deployed from Perseverance, charged up its solar panel, survived its first bone-chilling Martian night and firmly planted four legs on the ground. Once the team on Earth confirms that the rover drove about 16 feet (about 5 meters) away, and that both helicopter and rover are communicating via their onboard radios, preflight checks will begin, and Ingenuity will be on its way skyward.

Pioneering With Perseverance: More Technology Firsts

Perseverance will receive and relay the final flight instructions from mission controllers at our Jet Propulsion Laboratory to Ingenuity. Ingenuity will run its rotors to 2,537 rpm and, if all final self-checks look good, lift off. After climbing at a rate of about 3 feet per second (1 meter per second), the helicopter will hover at 10 feet (3 meters) above the surface for up to 30 seconds. Then, the Mars Helicopter will descend and touch back down on the Martian surface. With a smooth landing and continued operability, up to four more flights could be attempted, each one building on the success of the last.

Ingenuity could pave the way for other advanced robotic flying vehicles. Possible uses of next-generation rotorcraft on Mars include:

A unique viewpoint not provided by current orbiters, rovers or landers

High-definition images and reconnaissance for robots or humans

Access to terrain that is difficult for rovers to reach

Could even carry light but vital payloads from one site to another

Here’s how to follow along as this flight makes history.

2. First Production of Oxygen from Martian Atmosphere

The Mars Oxygen In-Situ Resource Utilization Experiment, better known as MOXIE, is preparing us for human exploration of Mars by demonstrating a way to extract oxygen directly from the Martian atmosphere. That could mean access to air for breathing, but also the ability to produce vast quantities of rocket fuel to return astronauts to Earth.

Pioneering With Perseverance: More Technology Firsts

Located inside the body of Perseverance, the car battery-sized instrument works like a miniature electronic tree on the rover, inhaling carbon dioxide, separating the molecule, and exhaling carbon monoxide and oxygen.

Pioneering With Perseverance: More Technology Firsts

MOXIE is the first demonstration of its kind on another planet – the first test of an in-situ resource utilization technology, meaning it generates a usable product from local materials. The farther humans go into deep space, the more important this will be, due to the limited immediate access to supplies.

MOXIE will give a go at its first operations soon, a huge first step in proving it’s feasible to make oxygen, in situ, on Mars. Future, larger versions of MOXIE (something about the size of a washing machine) could produce oxygen 200 times faster by operating continuously.

3. First Weather Reporter at Jezero Crater

The Mars Environmental Dynamics Analyzer (MEDA) system makes weather measurements including wind speed and direction, temperature and humidity, and also measures the amount and size of dust particles in the Martian atmosphere.

Using MEDA data, engineers on Earth recently pieced together the first weather report from Jezero Crater. Measurements from MEDA sensors are even helping to determine the optimal time for Ingenuity’s first flight.

Pioneering With Perseverance: More Technology Firsts

The weather instrument aboard the Curiosity rover – currently located a good 2,300 miles away from Perseverance on Mars – provides similar daily weather and atmospheric data. But MEDA can record the temperature at three atmospheric heights in addition to the surface temperature. It also records the radiation budget near the surface, which will help prepare for future human exploration missions on Mars.

MEDA’s weather reports, coupled with data gathered by Curiosity and NASA’s Insight lander, will enable a deeper understanding of Martian weather patterns, events, and atmospheric turbulence that could influence planning for future endeavors like the landing or launch of the proposed Mars Sample Return mission.

4. First Radar Tool to Probe Under the Martian Surface

On Earth, scientists use radar to look for things under the ground. They use it to study Mars-like glacial regions in the Arctic and Antarctic. Ground-penetrating radar helps us locate land mines; spot underground cables, wires, and pipes; or reveal ancient human artifacts and even buried treasure! On Mars, the "buried treasure" may be ice, which helps scientists understand the possibilities for Martian life and also identifies natural resources for future human explorers.

Perseverance's Radar Imager for Mars' Subsurface Experiment (RIMFAX) uses radar waves to probe the ground and reveal the unexplored world that lies beneath the Martian surface.

Pioneering With Perseverance: More Technology Firsts

It’s the first ground-penetrating radar on the surface of Mars. RIMFAX will provide a highly detailed view of subsurface structures down to at least 30 feet (10 meters). With those measurements, the instrument will reveal hidden layers of geology and help find clues to past environments on Mars, especially those with conditions necessary for supporting life.

Stay tuned in to the latest Perseverance updates on the mission website and follow NASA Technology on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Black Holes are NICER Than You Think!

We’re learning more every day about black holes thanks to one of the instruments aboard the International Space Station! Our Neutron star Interior Composition Explorer (NICER) instrument is keeping an eye on some of the most mysterious cosmic phenomena.

image

We’re going to talk about some of the amazing new things NICER is showing us about black holes. But first, let’s talk about black holes — how do they work, and where do they come from? There are two important types of black holes we’ll talk about here: stellar and supermassive. Stellar mass black holes are three to dozens of times as massive as our Sun while supermassive black holes can be billions of times as massive!

image

Stellar black holes begin with a bang — literally! They are one of the possible objects left over after a large star dies in a supernova explosion. Scientists think there are as many as a billion stellar mass black holes in our Milky Way galaxy alone!

Supermassive black holes have remained rather mysterious in comparison. Data suggest that supermassive black holes could be created when multiple black holes merge and make a bigger one. Or that these black holes formed during the early stages of galaxy formation, born when massive clouds of gas collapsed billions of years ago. There is very strong evidence that a supermassive black hole lies at the center of all large galaxies, as in our Milky Way.

image

Imagine an object 10 times more massive than the Sun squeezed into a sphere approximately the diameter of New York City — or cramming a billion trillion people into a car! These two examples give a sense of how incredibly compact and dense black holes can be.

Because so much stuff is squished into such a relatively small volume, a black hole’s gravity is strong enough that nothing — not even light — can escape from it. But if light can’t escape a dark fate when it encounters a black hole, how can we “see” black holes?

image

Scientists can’t observe black holes directly, because light can’t escape to bring us information about what’s going on inside them. Instead, they detect the presence of black holes indirectly — by looking for their effects on the cosmic objects around them. We see stars orbiting something massive but invisible to our telescopes, or even disappearing entirely!

When a star approaches a black hole’s event horizon — the point of no return — it’s torn apart. A technical term for this is “spaghettification” — we’re not kidding! Cosmic objects that go through the process of spaghettification become vertically stretched and horizontally compressed into thin, long shapes like noodles.

image

Scientists can also look for accretion disks when searching for black holes. These disks are relatively flat sheets of gas and dust that surround a cosmic object such as a star or black hole. The material in the disk swirls around and around, until it falls into the black hole. And because of the friction created by the constant movement, the material becomes super hot and emits light, including X-rays.  

At last — light! Different wavelengths of light coming from accretion disks are something we can see with our instruments. This reveals important information about black holes, even though we can’t see them directly.

image

So what has NICER helped us learn about black holes? One of the objects this instrument has studied during its time aboard the International Space Station is the ever-so-forgettably-named black hole GRS 1915+105, which lies nearly 36,000 light-years — or 200 million billion miles — away, in the direction of the constellation Aquila.

Scientists have found disk winds — fast streams of gas created by heat or pressure — near this black hole. Disk winds are pretty peculiar, and we still have a lot of questions about them. Where do they come from? And do they change the shape of the accretion disk?

image

It’s been difficult to answer these questions, but NICER is more sensitive than previous missions designed to return similar science data. Plus NICER often looks at GRS 1915+105 so it can see changes over time.

NICER’s observations of GRS 1915+105 have provided astronomers a prime example of disk wind patterns, allowing scientists to construct models that can help us better understand how accretion disks and their outflows around black holes work.

image

NICER has also collected data on a stellar mass black hole with another long name — MAXI J1535-571 (we can call it J1535 for short) — adding to information provided by NuSTAR, Chandra, and MAXI. Even though these are all X-ray detectors, their observations tell us something slightly different about J1535, complementing each other’s data!

This rapidly spinning black hole is part of a binary system, slurping material off its partner, a star. A thin halo of hot gas above the disk illuminates the accretion disk and causes it to glow in X-ray light, which reveals still more information about the shape, temperature, and even the chemical content of the disk. And it turns out that J1535’s disk may be warped!

image

Image courtesy of NRAO/AUI and Artist: John Kagaya (Hoshi No Techou)

This isn’t the first time we have seen evidence for a warped disk, but J1535’s disk can help us learn more about stellar black holes in binary systems, such as how they feed off their companions and how the accretion disks around black holes are structured.

NICER primarily studies neutron stars — it’s in the name! These are lighter-weight relatives of black holes that can be formed when stars explode. But NICER is also changing what we know about many types of X-ray sources. Thanks to NICER’s efforts, we are one step closer to a complete picture of black holes. And hey, that’s pretty nice!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Two are Better Than One: The NASA Twins Study

What exactly happens to the human body during spaceflight? The Twins Study,  a 340-day investigation conducted by NASA’s Human Research Program , sought to find answers. Scientists had an opportunity to see how conditions on the International Space Station translated to changes in gene expression by comparing identical twin astronauts: Scott Kelly who spent close to a year in space and Mark Kelly who remained on Earth.

The Process

image

From high above the skies, for almost a year, astronaut Scott Kelly periodically collected his own blood specimens for researchers on the ground during his One-Year Mission aboard the Space Station. These biological specimens made their way down to Earth onboard two separate SpaceX Dragon vehicles. A little bit of Scott returned to Earth each time and was studied by scientists across the United States.

Totaling 183 samples from Scott and his brother, Mark, these vials helped scientists understand the changes Scott’s body underwent while spending a prolonged stay in low Earth orbit.  

The Twins

image

Because identical twins share the same genetic makeup, they are very similar on a molecular level. Twin studies provide a way for scientists to explore how our health is impacted by the environment around us.

What We Learned: Gene Expression

image

A significant finding is the variability in gene expression, which reflects how a body reacts to its environment and will help inform how gene expression is related to health risks associated with spaceflight. While in space, researchers observed changes in the expression of Scott’s genes, with the majority returning to normal after six months on Earth. However, a small percentage of genes related to the immune system and DNA repair did not return to baseline after his return to Earth. Further, the results identified key genes to target for use in monitoring the health of future astronauts and potentially developing personalized countermeasures.

What We Learned: Immunome

image

Another key finding is that Scott’s immune system responded appropriately in space. For example, the flu vaccine administered in space worked exactly as it does on Earth. A fully functioning immune system during long-duration space missions is critical to protecting astronaut health from opportunistic microbes in the spacecraft environment.

What We Learned: Proteomics

image

Studying protein pathways in Scott enabled researchers to look at fluid regulation and fluid shifts within his body. Shifts in fluid may contribute to vision problems in astronauts. Scientists found a specific protein associated with fluid regulation was elevated in Scott, compared with his brother Mark on Earth.

What We Learned: Telomeres

The telomeres in Scott’s white blood cells, which are biomarkers of aging at the end of chromosomes, were unexpectedly longer in space then shorter after his return to Earth with average telomere length returning to normal six months later. In contrast, his brother’s telomeres remained stable throughout the entire period. Because telomeres are important for cellular genomic stability, additional studies on telomere dynamics are planned for future one-year missions to see whether results are repeatable for long-duration missions.

What We Learned: Cognition

image

Scott Kelly participated in a series of cognitive performance evaluations (such as mental alertness, spatial orientation, and recognition of emotions) administered through a battery of tests and surveys. Researchers found that during spaceflight, Scott’s cognitive function remained normal for the first half of his stay onboard the space station compared to the second half of his spaceflight and to his brother, Mark, on the ground. However, upon landing, Scott’s speed and accuracy decreased. Re-exposure to Earth’s gravity and the dynamic experience of landing may have affected the results.  

What We Learned: Biochemical

image

In studying various measurements on Scott, researchers found that his body mass decreased during flight, likely due to controlled nutrition and extensive exercise. While on his mission, Scott consumed about 30% less calories than researchers anticipated. An increase in his folate serum (vitamin B-9), likely due to an increase of the vitamin in his pre-packaged meals, was also noted by researchers. This is bolstered by the telomeres study, which suggests that proper nutrition and exercise help astronauts maintain health while in space.

What We Learned: Metabolomics

Within five months of being aboard the space station, researchers found an increase in the thickness of Scott’s arterial wall, which may have been caused by inflammation and oxidative stress during spaceflight. Whether this change is reversible is yet to be determined. They hope these results will help them understand the stresses that the human cardiovascular system undergoes during spaceflight. 

In addition, the results from the Microbiome, Epigenomics, and Integrative Omics studies suggest a human body is capable of adapting to and recovering from the spaceflight environment on a molecular level.

Why Does This Matter?

image

The data from the Twins Study Investigation will be explored for years to come as researchers report some interesting, surprising, and assuring data on how the human body is able to adapt to the extreme environment of spaceflight. This study gave us the first integrated molecular view into genetic changes, and demonstrated the plasticity and robustness of a human body!

We will use the valuable data to ensure the safety and health of the men and women who go on to missions to the Moon and on to Mars.

Learn more with this video about these fascinating discoveries!  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Scott Kelly Was the First To…

image

Astronaut Scott Kelly returned home from his year in space mission on March 1. Spending that much time in space allowed him to rack up some pretty cool milestones. Here are some of his awesome “firsts”:

Firsts on Social Media

image

While in space, Scott Kelly had the opportunity to host the first NASA TweetChat from space.

image

The first ever Tumblr AnswerTime from space was hosted by Scott Kelly during his One Year Mission.

image

Scott Kelly hosted the first NASA Reddit AMA from space.

image

Before leaving for his year in space, President Obama asked him to Instagram his time on orbit…a Presidential request to Instagram is a first!

Firsts for Scott

image

During his year in space, Scott conducted his first spacewalk. He hadn’t spacewalked on any of his previous missions, but did so three times during the One Year Mission.

Firsts for an American Astronaut

image

Most notably, Scott Kelly is the first U.S. astronaut to spend a year in space. His time on orbit also allowed us to conduct the first ever Twins Study on the space station. While Scott was in space, his twin brother Mark Kelly was on Earth. Since their genetic makeup is as close to identical as we can get, this allows a unique research perspective. We can now compare all of the results from Scott in space to his brother Mark on Earth.

image

During his year in space, Scott had the opportunity to be one of the first astronauts to harvest and eat lettuce grown in the space station’s VEGGIE facility. 

image

Space flowers! Scott was also one of the firsts to help grow and harvest zinnia flowers in the VEGGIE facility. Growing flowering plants in space will help scientists learn more about growing crops for deep-space missions and our journey to Mars.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago
Known As The Horsehead Nebula – But You Can Call It Starbiscuit.

Known as the Horsehead Nebula – but you can call it Starbiscuit.

Found by our Hubble Space Telescope, this beauty is part of a much larger complex in the constellation Orion.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
  • andromeda1023
    andromeda1023 liked this · 5 years ago
  • navyranveone
    navyranveone liked this · 6 years ago
  • fionakasmi-blog
    fionakasmi-blog liked this · 7 years ago
  • findingeternityineverymoment
    findingeternityineverymoment reblogged this · 7 years ago
  • their-memories-faded
    their-memories-faded liked this · 7 years ago
  • waywardbf
    waywardbf reblogged this · 7 years ago
  • sylvanistic
    sylvanistic liked this · 7 years ago
  • bynaffit
    bynaffit liked this · 7 years ago
  • miringrey
    miringrey liked this · 7 years ago
  • xd-1691-blog
    xd-1691-blog liked this · 7 years ago
  • femneclone
    femneclone liked this · 7 years ago
  • kaganbumin093
    kaganbumin093 liked this · 7 years ago
  • biggreene1
    biggreene1 liked this · 7 years ago
  • calcconverter
    calcconverter liked this · 7 years ago
  • nodaudaboutitt
    nodaudaboutitt reblogged this · 7 years ago
  • catyuy
    catyuy reblogged this · 7 years ago
  • fleurdebach5-blog
    fleurdebach5-blog liked this · 7 years ago
  • wheelerdraws-blog
    wheelerdraws-blog liked this · 7 years ago
  • bachatanero
    bachatanero liked this · 7 years ago
  • liviamarly
    liviamarly liked this · 7 years ago
  • bkuwabara
    bkuwabara reblogged this · 7 years ago
  • thesebatmanpantiesinparticu-blog
    thesebatmanpantiesinparticu-blog liked this · 7 years ago
  • mizukiyouko
    mizukiyouko liked this · 7 years ago
  • i-cookiemonster13-blog
    i-cookiemonster13-blog liked this · 7 years ago
  • bradleyhart624
    bradleyhart624 liked this · 7 years ago
  • iokosinaius-blog
    iokosinaius-blog liked this · 7 years ago
  • ivancampos59
    ivancampos59 liked this · 7 years ago
  • lazilysuperdonut-blog1
    lazilysuperdonut-blog1 liked this · 7 years ago
  • rdgprof
    rdgprof liked this · 7 years ago
  • sweatypizzatimetravel
    sweatypizzatimetravel reblogged this · 7 years ago
  • kimduong-lhp-blog
    kimduong-lhp-blog liked this · 7 years ago
  • ashtonferrets
    ashtonferrets reblogged this · 7 years ago
  • kimbabkidd1ng
    kimbabkidd1ng reblogged this · 7 years ago
  • kimbabkidd1ng
    kimbabkidd1ng liked this · 7 years ago
  • foreveryoung2311
    foreveryoung2311 liked this · 7 years ago
  • otiskosey
    otiskosey liked this · 7 years ago
  • yourlovelygirls
    yourlovelygirls liked this · 7 years ago
  • halcyonic-turtle
    halcyonic-turtle reblogged this · 7 years ago
  • babamjan
    babamjan liked this · 7 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags