Over A 22-hour Period (May 2-3, 2017), Strands Of Plasma At The Sun’s Edge Shifted And Twisted Back

Over a 22-hour period (May 2-3, 2017), strands of plasma at the sun’s edge shifted and twisted back and forth. In this close-up, the strands are being manipulated by strong magnetic forces associated with active regions on the sun. 

To give a sense of scale, the strands hover above the sun more than several times the size of Earth! The images were taken in a wavelength of extreme ultraviolet light. 

Learn more: http://go.nasa.gov/2qT2C4B

Credits: NASA/SDO

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

9 years ago

Blizzard 2016 from Space

As an intense winter storm approaches the mid-Atlantic this weekend, our satellites watch from above. The storm is expected to produce a wade swath of more than 2 feet of snow in some areas.

image

The below supercomputer simulation crunched the data to provide a look at the flow of clouds from storm systems around the globe, including the developing blizzard across the eastern United States.

This storm won’t only have a snowy impact on the mid-Atlantic region, but will also cause severe weather in the Gulf Coast. Satellites observe extreme rainfall in the area.

image

Data from NASA-NOAA Suomi NPP satellite and NOAA’s GOES-East satellite are being used to create images and animation of the movement of this powerful storm. For updates, visit: http://www.nasa.gov/feature/goddard/2016/nasa-sees-major-winter-storm-headed-for-eastern-us

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
1 year ago
An artist’s concept of NASA’s Advanced Composite Solar Sail System spacecraft in orbit as seen from directly above the spacecraft looking down at Earth below. The solar sail has four black triangular-shaped parts arranged in a diamond. In between the parts are small, thin cross-shaped pieces which connect the black parts. Credit: NASA

Setting Sail to Travel Through Space: 5 Things to Know about our New Mission

Our Advanced Composite Solar Sail System will launch aboard Rocket Lab’s Electron rocket from the company’s Launch Complex 1 in Māhia, New Zealand no earlier than April 23, at 6 p.m. EDT. This mission will demonstrate the use of innovative materials and structures to deploy a next-generation solar sail from a CubeSat in low Earth orbit.

Here are five things to know about this upcoming mission:

1. Sailing on Sunshine

Solar sails use the pressure of sunlight for propulsion much like sailboats harness the wind, eliminating the need for rocket fuel after the spacecraft has launched. If all goes according to plan, this technology demonstration will help us test how the solar sail shape and design work in different orbits.

Color GIF from animation of NASA’s Advanced Composite Solar Sail System mission. The spacecraft is seen rotating above Earth in orbit, with its reflective solar sail unfurled. The solar sail has four silver triangular-shaped parts arranged in a diamond. In between the parts are small, thin cross-shaped pieces which are the booms connecting the sail. Credit: NASA/Ben Schweighart

2. Small Package, Big Impact

The Advanced Composite Solar Sail System spacecraft is a CubeSat the size of a microwave, but when the package inside is fully unfurled, it will measure about 860 square feet (80 square meters) which is about the size of six parking spots. Once fully deployed, it will be the biggest, functional solar sail system – capable of controlled propulsion maneuvers – to be tested in space.

Setting Sail To Travel Through Space: 5 Things To Know About Our New Mission

3. Second NASA Solar Sail in Space

If successful, the Advanced Composite Solar Sail System will be  the second NASA solar sail to deploy in space, and not only will it be much larger, but this system will also test navigation capabilities to change the spacecraft’s orbit. This will help us gather data for future missions with even larger sails.

Color GIF from animation of NASA’s Advanced Composite Solar Sail System mission. The view is a close-up of two different angles from the perspective of the spacecraft above Earth. We see gears onboard turning as part of the system that deploys the tubular booms unfurling the silver sail material. Credit: NASA/Ben Schweighart

4. BOOM: Stronger, Lighter Booms

Just like a sailboat mast supports its cloth sails, a solar sail has support beams called booms that provide structure. The Advanced Composite Solar Sail System mission’s primary objective is to deploy a new type of boom. These booms are made from flexible polymer and carbon fiber materials that are stiffer and 75% lighter than previous boom designs. They can also be flattened and rolled like a tape measure. Two booms spanning the diagonal of the square (23 feet or about 7 meters in length) could be rolled up and fit into the palm of your hand!

Color GIF from animation of NASA’s Advanced Composite Solar Sail System mission. First, we see the full system sailing above Earth with its four silver triangular sail segments forming a diamond shape. In between the parts are small, thin cross-shaped pieces which are the booms connecting the sail. The Sun is seen distantly in the background. The second view shows the solar sail system sailing away into deep space. Credit: NASA/Ben Schweighart

5. It’s a bird...it’s a plane...it’s our solar sail!

About one to two months after launch, the Advanced Composite Solar Sail System spacecraft will deploy its booms and unfurl its solar sail. Because of its large size and reflective material, the spacecraft may be visible from Earth with the naked eye if the lighting conditions and orientation are just right!

To learn more about this mission that will inform future space travel and expand our understanding of our Sun and solar system, visit https://www.nasa.gov/mission/acs3/.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
10 months ago

ALT: This video shows blades of grass moving in the wind on a beautiful day at NASA’s Michoud Assembly Facility in New Orleans. In the background, we see the 212-foot-core stage for the powerful SLS (Space Launch System) rocket used for Artemis I. The camera ascends, revealing the core stage next to a shimmering body of water as technicians lead it towards NASA’s Pegasus barge. Credit: NASA

The SLS (Space Launch System) Core Stage by Numbers

Technicians with NASA and SLS core stage lead contractor Boeing, along with RS-25 engines lead contractor Aerojet Rocketdyne, an L3Harris Technologies company, are nearing a major milestone for the Artemis II mission. The SLS (Space Launch System) rocket’s core stage for Artemis II is fully assembled and will soon be shipped via barge from NASA’s Michoud Assembly Facility in New Orleans to the agency’s Kennedy Space Center in Florida. Once there, it will be prepped for stacking and launch activities.

Get to know the core stage – by the numbers.

A vibrant blue sky creates a beautiful backdrop for the colossal orange core stage of NASA's Artemis I SLS rocket. Sprawled horizontally against the industrial backdrop of NASA’s Michoud Assembly Facility. Technicians in bright yellow vests are seen next to the core stage and add a human touch to the scale of this monumental hardware. Credit: NASA

Standing 212 feet tall and measuring 27.6 feet in diameter, the SLS core stage is the largest rocket stage NASA has ever built. Due to its size, the hardware must be shipped aboard NASA’s Pegasus barge.

A montage of three photos captures two men strolling across NASA's Pegasus barge at night preparing to set sail before shifting to two images of the barge on an journey down the mighty Mississippi River from varied perspectives.
Credit: NASA/Steve Seipel and George Shelton

900 miles

Once loaded, the barge – which was updated to accommodate the giant core stage -- will travel 900 miles to Florida across inland and ocean waterways. Once at Kennedy, teams with our Exploration Ground Systems team will complete checkouts for the core stage prior to stacking preparations.

NASA astronauts Christina Koch and Reid Wiseman immerse themselves in NASA's Systems Integration Lab at Marshall Space Flight Center in Huntsville, Alabama,, surrounded by a web of crucial cables, wires, and avionics systems that act as the 'brains' of the SLS rocket. Engrossed, they listen intently as a NASA engineer unveils the intricate workings before them. Credit: NASA/Sam Lott

18 Miles + 500 Sensors

As impressive as the core stage is on the outside, it’s also incredible on the inside. The “brains” of the rocket consist of three flight computers and special avionics systems that tell the rocket what to do. This is linked to 18 miles of cabling and more than 500 sensors and systems to help feed fuel and steer the four RS-25 engines.

This GIF shows a panoramic sweep showing several RS-25 engines, their vibrant red and silver hues shining under the lights of NASA’s Michoud Assembly Facility, as they await installation on the SLS core stage. Credit: NASA

8.8 million

Speaking of engines… Our SLS Moon rocket generates approximately 8.8 million pounds of thrust at launch. Two million pounds come from the four powerful RS-25 engines at the base of the core stage, while each of the two solid rocket boosters produces a maximum thrust of 3.6 million pounds. Together, the engines and boosters will help launch a crew of four Artemis astronauts inside NASA’s Orion spacecraft beyond Earth orbit to venture around the Moon.

ALT: Two large, white spheres used to hold the liquid propellants for the SLS (Space Launch System) are seen at launch complex 39B at NASA’s Kennedy Space Center. These white tanks stand tall and vibrant amongst a blue sky and green grass. Credit: NASA/Chad Siwik

733,000 Gallons

Achieving the powerful thrust required at launch calls for a large amount of fuel - 733,000 gallons, to be precise. The stage has two huge propellant tanks that hold the super-cooled liquid hydrogen and liquid oxygen that make the rocket “go.” A new liquid hydrogen storage sphere has recently been built at Kennedy, which can store 1.25 million gallons of liquid hydrogen.

We see from left to right NASA astronauts Victor Glover, Christina Koch, Reid Wiseman, and Canadian Space Agency’s Jeremy Hansen stand in their vibrant orange flight suits, clutching their helmets. Against a cosmic backdrop of deep black, a mesmerizing white starburst effect emanates behind them, intensifying the moment as the video gradually draws them closer, evoking a sense of awe and anticipation. Credit: NASA

Four

The number four doesn’t just apply to the RS-25 engines. It’s also the number of astronauts who will fly inside our Orion spacecraft atop our SLS rocket for the first crewed Artemis mission. When NASA astronauts Reid Wiseman, Christina Koch, and Victor Glover along with CSA astronaut Jeremy Hansen launch, they will be the first astronauts returning to the Moon in more than 50 years.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago

What's a Question you wish someone would ask?


Tags
5 years ago

How does time work in a black hole?


Tags
5 years ago

21 Years of Amazing Earth Imagery

On April 29, 1999, NASA Earth Observatory started delivering science stories and imagery to the public through the Internet. Today, we turn 21! So much has changed in the past two decades... 

One of the most notable changes is the way we view our home planet. Check out some of the beautiful imagery of our planet over the past 21 years.

2000: Pine Island Glacier

image

Most people will never see Pine Island Glacier in person. Located near the base of the Antarctic Peninsula—the “thumb” of the continent—the glacier lies more than 2,600 kilometers (1,600 miles) from the tip of South America. That’s shorter than a cross-country flight from New York to Los Angeles, but there are no runways on the glacier and no infrastructure. Only a handful of scientists have ever set foot on its ice.

This animation shows a wide view of Pine Island Glacier and the long-term retreat of its ice front. Images were acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on our Terra satellite from 2000 to 2019. Notice that there are times when the front appears to stay in the same place or even advance, though the overall trend is toward retreat. Read more.

2002: The Blue Marble

image

In February 2002, Earth Observatory published this “blue marble” image based on the most detailed collection of true-color imagery of the entire Earth at that time. Using a collection of satellite-based observations, scientists and visualizers stitched together months of observations of the land surface, oceans, sea ice and clouds into a seamless, true-color mosaic of every square kilometer (.386 square mile) of our planet. Most of the information contained in this image came from Moderate Resolution Imaging Spectrometer (MODIS), illustrating the instrument's outstanding capacity to act as an integrated tool for observing a variety of terrestrial, oceanic and atmospheric features of the Earth. Read more.

2009: Tsauchab River Bed

image

The Tsauchab River is a famous landmark for the people of Namibia and tourists. Yet few people have ever seen the river flowing with water. In December 2009, an astronaut on the International Space Station caught this glimpse of the Tsauchab River bed jutting into the sea of red dunes. It ends in a series of light-colored, silty mud holes on the dry lake floor.

Like several other rivers around the Namib Desert, the Tsauchab brings sediment down from the hinterland toward the coastal lowland. This sediment is then blown from the river beds, and over tens of millions of years it has accumulated as the red dunes of the Namib Sand Sea. Read more. 

2012: Manning Island and Foxe Basin, Canada

image

Although it may look like a microscope’s view of a thin slice of mineral-speckled rock, this image was actually acquired in space by the Earth Observing-1 satellite in July 2012. It shows a small set of islands and a rich mixture of ice in Foxe Basin, the shallow northern reaches of Hudson Bay.

The small and diverse sizes of the ice floes indicate that they were melting. The darkest colors in the image are open water. Snow-free ice appears gray, while snow-covered ice appears white. The small, dark features on many of the floes are likely melt ponds. Read more.

2013: A Lava Lamp Look at the Atlantic

image

Stretching from tropical Florida to the doorstep of Europe, this river of water carries a lot of heat, salt, and history. The Gulf Stream is an important part of the global ocean conveyor belt that moves water and heat across the North Atlantic from the equator toward the poles. It is one of the strongest currents on Earth, and one of the most studied.

This image shows a small portion of the Gulf Stream as it appears in infrared imagery. Data for this image was acquired on April 9, 2013, by the Thermal Infrared Sensor (TIRS) on the Landsat 8 satellite. TIRS observes in wavelengths of 10.9 micrometers and 12.0 micrometers. The image above is centered at 33.06° North latitude, 73.86° West longitude, about 500 kilometers (300 miles) east of Charleston, South Carolina. Read more.

2016: Curious Ensemble of Wonderful Features

image

When John Wesley Powell explored the Colorado River in 1869, he made the first thorough survey of one of the last blank spots on the map. The expedition began in May at Green River, Wyoming, and ended three months later at the confluence of the Colorado and Virgin Rivers in present-day Nevada.

About two months into their journey, the nine men of the expedition found themselves in Glen Canyon. As the men traveled along the serpentine river channel, they encountered what Powell later described in Canyons of Colorado as a “curious ensemble of wonderful features.”

From above, the view of Glen Canyon is equally arresting. In 2016, an astronaut aboard the International Space Station took several photographs that were combined to make a long mosaic. The water has an unnatural shade of blue because of sunglint, an optical phenomenon that occurs when sunlight reflects off the surface of water at the same angle that a camera views it. Click here to see the long mosaic.

2019: Lena Delta Shakes Off Water

image

For most of the year, the Lena River Delta—a vast wetland fanning out from northeast Siberia into the Arctic Ocean—is either frozen over and barren or thawed out and lush. Only briefly will you see it like this.

After seven months encased in snow and ice, the delta emerges for the short Arctic summer. The transition happens fast. The animation above, composed of images from the Moderate Resolution Imaging Spectroradiometer (MODIS) on our Aqua satellite, shows the transformation from June 3-10, 2019. Read more.

2020: Making Waves in the Andaman Sea

image

When tides, currents and gravity move water masses over seafloor features, they can create wave actions within the ocean. Oceanographers began studying these internal waves from ships in the 1960s, and the modern era of satellites has made it possible to see them on a grand scale. The Operational Land Imager (OLI) on Landsat 8 captured these images of the Andaman Sea on November 29, 2019. The reflection of the Sun on the ocean—sunglint—helps make the internal waves visible.

Internal waves form because the ocean is layered. Deep water tends to be colder, denser and saltier, while shallower water is often warmer, lighter and fresher. The differences in density and salinity cause layers of the ocean to behave like different fluids. When tides, currents, gravity and Earth’s rotation move these different water masses over seafloor formations (such as ridges or canyons), they create waves within the sea. Read more.

These images were taken from NASA Earth Observatory! 

Interested in receiving Earth Observatory's Images of the Day? Subscribe to our newsletters or RSS feeds.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago
Retro. Modern. Iconic. That’s The Worm. 
Retro. Modern. Iconic. That’s The Worm. 
Retro. Modern. Iconic. That’s The Worm. 

Retro. Modern. Iconic. That’s the worm. 

#TheWormIsBack

Our beloved symbol of exploration will fly once again, just in time to mark the return of human spaceflight on American rockets from American soil. The retired logo is making its comeback on on SpaceX’s Falcon 9 rocket that will take flight later this year when we #LaunchAmerica once again.

The NASA insignia, or "meatball," seen in our profile image, was quite difficult to reproduce with 1970s technology. In 1975, enter the sleek, simple design you see above! The world knew it as “the worm.” For a period of time we were able to thrive with both the worm and the meatball. However, in 1992, the 1970s brand was retired - except on clothing and other souvenir items - in favor of the original late 1950s graphic.

Image Credit: NASA/SpaceX

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Distance: Hazard Far From Home

A human journey to Mars, at first glance, offers an inexhaustible amount of complexities. To bring a mission to the Red Planet from fiction to fact, our Human Research Program has organized some of the hazards astronauts will encounter on a continual basis into five classifications.

image

The third and perhaps most apparent hazard is, quite simply, the distance.

image
image

Rather than a three-day lunar trip, astronauts would be leaving our planet for roughly three years. Facing a communication delay of up to 20 minutes one way and the possibility of equipment failures or a medical emergency, astronauts must be capable of confronting an array of situations without support from their fellow team on Earth.

image

Once you burn your engines for Mars, there is no turning back so planning and self-sufficiency are essential keys to a successful Martian mission. The Human Research Program is studying and improving food formulation, processing, packaging and preservation systems.

image
image

While International Space Station expeditions serve as a rough foundation for the expected impact on planning logistics for such a trip, the data isn’t always comparable, but it is a key to the solution.

image

Exploration to the Moon and Mars will expose astronauts to five known hazards of spaceflight, including distance from Earth. To learn more, and find out what our Human Research Program is doing to protect humans in space, check out the "Hazards of Human Spaceflight" website. Or, check out this week’s episode of “Houston We Have a Podcast,” in which host Gary Jordan further dives into the threat of distance with Erik Antonsen, the Assistant Director for Human Systems Risk Management at the Johnson Space Center.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
5 years ago

What kind of things are you looking forward to as NASA gets closer to the Artemis and Gateway missions? Do you plan to be a part of them?


Tags
6 years ago
3 … 2 … 1… ALOHA!

3 … 2 … 1… ALOHA!

Sometimes in space, you have to set your clocks to island time and gather for a good Hawaiian shirt day. In this 2001 #TBT, Expedition Two and STS-100 crew members gather for a group photo with a pre-set digital still camera.

Clockwise from the 12 o'clock point in the circle are Kent V. Rominger, Yuri V. Lonchakov, Yury V. Usachev, Umberto Guidoni, James S. Voss, Jeffrey S. Ashby, Scott E. Parazynski, John L. Phillips and Chris A. Hadfield, with Susan J. Helms at center. Usachev, Helms and Voss are members of three Expedition Two crew, with the other seven serving as the STS-100 crew on the Space Shuttle Endeavour. Usachev and Lonchakov represent Rosaviakosmos; Guidoni is associated with the European Space Agency (ESA); and Hadfield is from the Canadian Space Agency (CSA).

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
  • masturdating
    masturdating reblogged this · 9 months ago
  • complistix-blog
    complistix-blog liked this · 5 years ago
  • hellocoralcollectortiger-blog
    hellocoralcollectortiger-blog liked this · 6 years ago
  • piperhicks8430-blog
    piperhicks8430-blog liked this · 6 years ago
  • eldavruegseggergj
    eldavruegseggergj liked this · 6 years ago
  • xochitlxkoepnickgy
    xochitlxkoepnickgy liked this · 6 years ago
  • delilaymccabehn
    delilaymccabehn liked this · 6 years ago
  • haileymason3798
    haileymason3798 liked this · 6 years ago
  • profoundlycrookedearthquake
    profoundlycrookedearthquake liked this · 6 years ago
  • mysticalfestbanana
    mysticalfestbanana liked this · 6 years ago
  • adalineflores3105
    adalineflores3105 liked this · 6 years ago
  • julissagzumpfezp-blog
    julissagzumpfezp-blog liked this · 6 years ago
  • harmonyedwards9540
    harmonyedwards9540 liked this · 6 years ago
  • allisonwebb2081-blog
    allisonwebb2081-blog liked this · 6 years ago
  • crispydonutblizzard-blog
    crispydonutblizzard-blog liked this · 6 years ago
  • loreeyvinallsl-blog
    loreeyvinallsl-blog liked this · 6 years ago
  • ryleighwallace612-blog
    ryleighwallace612-blog liked this · 6 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags