Puraten10 On Instagram

Puraten10 On Instagram

Puraten10 on Instagram

More Posts from Monstrous-mind and Others

5 years ago
Saturn - False Color - 2004 And 2014 
Saturn - False Color - 2004 And 2014 

Saturn - False Color - 2004 and 2014 

Credit: NASA/JPL-Caltech/SSI/CICLOPS/Kevin M. Gill

8 months ago
Can’t Wait To Walk Down The Block And See Decorated Houses 😮‍💨🍂🎃🧡
Can’t Wait To Walk Down The Block And See Decorated Houses 😮‍💨🍂🎃🧡
Can’t Wait To Walk Down The Block And See Decorated Houses 😮‍💨🍂🎃🧡
Can’t Wait To Walk Down The Block And See Decorated Houses 😮‍💨🍂🎃🧡
Can’t Wait To Walk Down The Block And See Decorated Houses 😮‍💨🍂🎃🧡

Can’t wait to walk down the block and see decorated houses 😮‍💨🍂🎃🧡

3 years ago

🔭🌃🌌

Cosmic Alphabet Soup: Classifying Stars

Cosmic Alphabet Soup: Classifying Stars

If you’ve spent much time stargazing, you may have noticed that while most stars look white, some are reddish or bluish. Their colors are more than just pretty – they tell us how hot the stars are. Studying their light in greater detail can tell us even more about what they’re like, including whether they have planets. Two women, Williamina Fleming and Annie Jump Cannon, created the system for classifying stars that we use today, and we’re building on their work to map out the universe.

Cosmic Alphabet Soup: Classifying Stars

By splitting starlight into spectra – detailed color patterns that often feature lots of dark lines – using a prism, astronomers can figure out a star’s temperature, how long it will burn, how massive it is, and even how big its habitable zone is. Our Sun’s spectrum looks like this:

Cosmic Alphabet Soup: Classifying Stars

Astronomers use spectra to categorize stars. Starting at the hottest and most massive, the star classes are O, B, A, F, G (like our Sun), K, M. Sounds like cosmic alphabet soup! But the letters aren’t just random – they largely stem from the work of two famous female astronomers.

Cosmic Alphabet Soup: Classifying Stars

Williamina Fleming, who worked as one of the famous “human computers” at the Harvard College Observatory starting in 1879, came up with a way to classify stars into 17 different types (categorized alphabetically A-Q) based on how strong the dark lines in their spectra were. She eventually classified more than 10,000 stars and discovered hundreds of cosmic objects!

Cosmic Alphabet Soup: Classifying Stars

That was back before they knew what caused the dark lines in spectra. Soon astronomers discovered that they’re linked to a star’s temperature. Using this newfound knowledge, Annie Jump Cannon – one of Fleming’s protégés – rearranged and simplified stellar classification to include just seven categories (O, B, A, F, G, K, M), ordered from highest to lowest temperature. She also classified more than 350,000 stars!

Cosmic Alphabet Soup: Classifying Stars

Type O stars are both the hottest and most massive in the new classification system. These giants can be a thousand times bigger than the Sun! Their lifespans are also around 1,000 times shorter than our Sun’s. They burn through their fuel so fast that they only live for around 10 million years. That’s part of the reason they only make up a tiny fraction of all the stars in the galaxy – they don’t stick around for very long.

Cosmic Alphabet Soup: Classifying Stars

As we move down the list from O to M, stars become progressively smaller, cooler, redder, and more common. Their habitable zones also shrink because the stars aren’t putting out as much energy. The plus side is that the tiniest stars can live for a really long time – around 100 billion years – because they burn through their fuel so slowly.

Cosmic Alphabet Soup: Classifying Stars

Astronomers can also learn about exoplanets – worlds that orbit other stars – by studying starlight. When a planet crosses in front of its host star, different kinds of molecules in the planet’s atmosphere absorb certain wavelengths of light.

By spreading the star’s light into a spectrum, astronomers can see which wavelengths have been absorbed to determine the exoplanet atmosphere’s chemical makeup. Our James Webb Space Telescope will use this method to try to find and study atmospheres around Earth-sized exoplanets – something that has never been done before.

Cosmic Alphabet Soup: Classifying Stars

Our upcoming Nancy Grace Roman Space Telescope will study the spectra from entire galaxies to build a 3D map of the cosmos. As light travels through our expanding universe, it stretches and its spectral lines shift toward longer, redder wavelengths. The longer light travels before reaching us, the redder it becomes. Roman will be able to see so far back that we could glimpse some of the first stars and galaxies that ever formed.

Learn more about how Roman will study the cosmos in our other posts:

Roman’s Family Portrait of Millions of Galaxies

New Rose-Colored Glasses for Roman

How Gravity Warps Light

Make sure to follow us on Tumblr for your regular dose of space!

6 years ago

What’s Up For September 2018?

Outstanding views Venus, Jupiter, Saturn and Mars with the naked eye!

image

You’ll have to look quickly after sunset to catch Venus. And through binoculars or a telescope, you’ll see Venus’s phase change dramatically during September - from nearly half phase to a larger thinner crescent!

image

Jupiter, Saturn and Mars continue their brilliant appearances this month. Look southwest after sunset.

image

Use the summer constellations help you trace the Milky Way.

image

Sagittarius: where stars and some brighter clumps appear as steam from the teapot.

image

Aquila: where the Eagle’s bright Star Altair, combined with Cygnus’s Deneb, and Lyra’s Vega mark the Summer Triangle. 

image

Cassiopeia, the familiar “w”- shaped constellation completes the constellation trail through the Summer Milky Way. Binoculars will reveal double stars, clusters and nebulae. 

image

Between September 12th and the 20th, watch the Moon pass from near Venus, above Jupiter, to the left of Saturn and finally above Mars! 

image

Both Neptune and brighter Uranus can be spotted with some help from a telescope this month.

What’s Up For September 2018?

Look at about 1:00 a.m. local time or later in the southeastern sky. You can find Mercury just above Earth’s eastern horizon shortly before sunrise. Use the Moon as your guide on September 7 and 8th.

What’s Up For September 2018?

And although there are no major meteor showers in September, cometary dust appears in another late summer sight, the morning Zodiacal light. Try looking for it in the east on moonless mornings very close to sunrise. To learn more about the Zodiacal light, watch “What’s Up” from March 2018.

What’s Up For September 2018?

Watch the full What’s Up for September Video: 

There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

5 years ago

🐈🍁🍂

Via Fall/Halloween

via Fall/Halloween

••• Wake Me Up When September Starts •••

6 years ago
The Instrument Deployment Camera (IDC), Located On The Robotic Arm Of NASA’s InSight Lander, Took This

The Instrument Deployment Camera (IDC), located on the robotic arm of NASA’s InSight lander, took this picture of the Martian surface on Nov. 26, 2018, the same day the spacecraft touched down on the Red Planet. The camera’s transparent dust cover is still on in this image, to prevent particulates kicked up during landing from settling on the camera’s lens. This image was relayed from InSight to Earth via NASA’s Odyssey spacecraft, currently orbiting Mars.

Credits: NASA/JPL-Caltech

6 years ago

String Theory

String theory is a fascinating physical model in which all particles are replaced by one-dimensional objects known as strings. This theory says that we live in more than four dimensions, but we can not perceive them.

String theory, is a complete theory and unites quantum physics with Einstein’s general relativity.

image

On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries gravitational force. Thus string theory is a theory of quantum gravity.

image

According to string theory, the reason we can not observe these dimensions is because they are very small and compact (smaller than the plank length 10 −35)

image
image

Compactification is one way of modifying the number of dimensions in a physical theory. In compactification, some of the extra dimensions are assumed to “close up” on themselves to form circles. In the limit where these curled up dimensions become very small, one obtains a theory in which spacetime has effectively a lower number of dimensions. A standard analogy for this is to consider a multidimensional object such as a garden hose. If the hose is viewed from a sufficient distance, it appears to have only one dimension, its length. However, as one approaches the hose, one discovers that it contains a second dimension, its circumference. Thus, an ant crawling on the surface of the hose would move in two dimensions.

image

Compactification can be used to construct models in which spacetime is effectively four-dimensional. However, not every way of compactifying the extra dimensions produces a model with the right properties to describe nature. In a viable model of particle physics, the compact extra dimensions must be shaped like a Calabi–Yau manifold

image

Another approach to reducing the number of dimensions is the so-called brane-world scenario. In this approach, physicists assume that the observable universe is a four-dimensional subspace of a higher dimensional space. In such models, the force-carrying bosons of particle physics arise from open strings with endpoints attached to the four-dimensional subspace, while gravity arises from closed strings propagating through the larger ambient space. This idea plays an important role in attempts to develop models of real world physics based on string theory, and it provides a natural explanation for the weakness of gravity compared to the other fundamental forces

image

One notable feature of string theories is that these theories require extra dimensions of spacetime for their mathematical consistency. In bosonic string theory, spacetime is 26-dimensional, while in superstring theory it is 10-dimensional, and in M-theory it is 11-dimensional. In order to describe real physical phenomena using string theory, one must therefore imagine scenarios in which these extra dimensions would not be observed in experiments.

image

The original version of string theory was bosonic string theory, but this version described only bosons, a class of particles which transmit forces between the matter particles, or fermions. Bosonic string theory was eventually superseded by theories called superstring theories. These theories describe both bosons and fermions, and they incorporate a theoretical idea called supersymmetry.

image

This is a mathematical relation that exists in certain physical theories between the bosons and fermions. In theories with supersymmetry, each boson has a counterpart which is a fermion, and vice versa.

image

There are several versions of superstring theory: type I, type IIA, type IIB, and two flavors of heterotic string theory (SO(32) and E8×E8). The different theories allow different types of strings, and the particles that arise at low energies exhibit different symmetries. For example, the type I theory includes both open strings (which are segments with endpoints) and closed strings (which form closed loops), while types IIA, IIB and heterotic include only closed strings.

image

Branes

In string theory and other related theories, a brane is a physical object that generalizes the notion of a point particle to higher dimensions. For instance, a point particle can be viewed as a brane of dimension zero, while a string can be viewed as a brane of dimension one. It is also possible to consider higher-dimensional branes. In dimension p, these are called p-branes. The word brane comes from the word “membrane” which refers to a two-dimensional brane

In string theory, D-branes are an important class of branes that arise when one considers open strings

image

D-branes are typically classified by their spatial dimension, which is indicated by a number written after the D. A D0-brane is a single point, a D1-brane is a line (sometimes called a “D-string”), a D2-brane is a plane, and a D25-brane fills the highest-dimensional space considered in bosonic string theory. There are also instantonic D(–1)-branes, which are localized in both space and time.

Duality

A striking fact about string theory is that the different versions of the theory prove to be highly non-trivial in relation. One of the relationships that exist between different theories is called S-duality. This is a relationship that says that a collection of interacting particles in a theory may in some cases be viewed as a collection of weak interacting particles in a completely different theory. Approximately, a collection of particles is said to interact strongly if they combine and deteriorate frequently and interact poorly if they do so infrequently. The type I string theory turns out to be equivalent by S-duality to the heterotic string theory SO (32). Likewise, type IIB string theory is related to itself in a non-trivial way by S-duality

image

Another relationship between different string theories is T-duality. Here one considers strings propagating around a circular extra dimension. T-duality states that a string propagating around a circle of radius R is equivalent to a string propagating around a circle of radius 1/R in the sense that all observable quantities in one description are identified with quantities in the dual description. For example, a string has momentum as it propagates around a circle, and it can also wind around the circle one or more times. The number of times the string winds around a circle is called the winding number. If a string has momentum p and winding number n in one description, it will have momentum n and winding number p in the dual description. For example, type IIA string theory is equivalent to type IIB string theory via T-duality, and the two versions of heterotic string theory are also related by T-duality.

image

Black holes

In general relativity, a black hole is defined as a region of spacetime in which the gravitational field is so strong that no particle or radiation can escape. In the currently accepted models of stellar evolution, black holes are thought to arise when massive stars undergo gravitational collapse, and many galaxies are thought to contain supermassive black holes at their centers. 

image

Black holes are also important for theoretical reasons, as they present profound challenges for theorists attempting to understand the quantum aspects of gravity. String theory has proved to be an important tool for investigating the theoretical properties of black holes because it provides a framework in which theorists can study their thermodynamics.

image

The big bang theory doesn’t offer any explanation for what started the original expansion of the universe. This is a major theoretical question for cosmologists, and many are applying the concepts of string theory in attempts to answer it. One controversial conjecture is a cyclic universe model called the ekpyrotic universe theory, which suggests that our own universe is the result of branes colliding with each other.

Some things that string theory could explain: Neutrinos would have to have mass (minimum), Decay of Proton, New fields of force (short and long range) defined by some forms of calabi-yau, Explanations for Dark Matter.

sources: x, x, x, x, x, x

image

String theory is a very complex and broad area, so this post is only a summary. To better understand, I suggest you read Brian Greene’s books: The Elegant Universe and The Fabric of the Cosmo.

6 years ago
Cozy Autumn Days

cozy autumn days

5 years ago
Distant Time - Nature Reserve, Germany - October 2k16
Distant Time - Nature Reserve, Germany - October 2k16

Distant Time - Nature Reserve, Germany - October 2k16

IG: https://instagram.com/lutz.heidbrink/

  • melodic-sea
    melodic-sea reblogged this · 6 years ago
  • peekcrest
    peekcrest reblogged this · 6 years ago
  • peekcrest
    peekcrest liked this · 6 years ago
  • ilovebeardedmen63
    ilovebeardedmen63 liked this · 6 years ago
  • flowerss-posts
    flowerss-posts liked this · 6 years ago
  • 771tyyporin115py12322
    771tyyporin115py12322 reblogged this · 6 years ago
  • pacogabby
    pacogabby liked this · 6 years ago
  • hereditarymagicwitches
    hereditarymagicwitches reblogged this · 6 years ago
  • hereditarymagicwitches
    hereditarymagicwitches liked this · 6 years ago
  • evangelos-rodoulis
    evangelos-rodoulis liked this · 6 years ago
  • wachsurfer2018
    wachsurfer2018 liked this · 6 years ago
  • babu-r-itsme-blog
    babu-r-itsme-blog liked this · 6 years ago
  • vocatuselixir
    vocatuselixir liked this · 6 years ago
  • ambient-entropy
    ambient-entropy reblogged this · 6 years ago
  • ambient-entropy
    ambient-entropy liked this · 6 years ago
  • velius1971
    velius1971 liked this · 6 years ago
  • blaue3
    blaue3 liked this · 6 years ago
  • coolultramodernesolitude
    coolultramodernesolitude liked this · 6 years ago
  • nefariousdarling
    nefariousdarling reblogged this · 6 years ago
  • thinnerthick
    thinnerthick liked this · 6 years ago
  • chrisalford
    chrisalford liked this · 6 years ago
  • dravensjoke
    dravensjoke reblogged this · 6 years ago
  • rainytimemachinedeer
    rainytimemachinedeer liked this · 6 years ago
  • pixielush666
    pixielush666 reblogged this · 6 years ago
  • witchand2cats-blog
    witchand2cats-blog reblogged this · 6 years ago
  • loveroftheartsandsciences
    loveroftheartsandsciences liked this · 6 years ago
  • udonjuana5
    udonjuana5 reblogged this · 6 years ago
  • bophades999
    bophades999 reblogged this · 6 years ago
  • bophades999
    bophades999 liked this · 6 years ago
  • m0onchld
    m0onchld liked this · 6 years ago
  • cheapthrillsssss
    cheapthrillsssss reblogged this · 6 years ago
  • blamestorm
    blamestorm liked this · 6 years ago
  • pangeen
    pangeen reblogged this · 6 years ago
monstrous-mind - The Monster Mind
The Monster Mind

  My ambition is handicapped by laziness. -C. Bukowski    Me gustan las personas desesperadas con mentes rotas y destinos rotos. Están llenos de sorpresas y explosiones. -C. Bukowski. I love cats. Born in the early 80's, raised in the 90's. I like Nature, Autumn, books, landscapes, cold days, cloudy Windy days, space, Science, Paleontology, Biology, Astronomy, History, Social Sciences, Drawing, spending the night watching at the stars, Rick & Morty. I'm a lazy ass.

222 posts

Explore Tumblr Blog
Search Through Tumblr Tags