“[The Event Horizon Telescope] uses VLBI. So what is interferometry and how was it employed by [the Event Horizon Telescope]? Seems like it was a key ingredient in producing the image of M87 but I have no idea how or why. Care to elucidate?”
If it were easy to network radio telescopes together across the world, we’d have produced an image of a black hole’s event horizon long ago. Well, it’s not easy at all, but it is at least possible! The technique that enabled it is known as VLBI: very-long-baseline interferometry. But there are some critical steps that aren’t very obvious that need to happen in order for this method to succeed. Remarkably, we learned how to do it and have successfully employed it, and the Event Horizon Telescope marks the first time we’ve ever been able to get an image with a telescope that’s effectively the size of planet Earth!
Come get the incredible science behind how the technique of VLBI enabled the Event Horizon Telescope to construct the first-ever image of a black hole’s event horizon!
Image Credit: NOAA
Earth’s ocean has been the backdrop for ancient epics, tales of fictional fish and numerous scientific discoveries. It was, and will always be, a significant piece of the Earth’s story. Most of the ocean is unexplored– about 95% of this underwater realm is unseen by human eyes (NOAA). There is only one global Ocean. In fact, the ocean represents over 70% of the Earth’s surface and contains 96.5% of the Earth’s water.
We and the NOAA Office of Ocean Exploration and Research work together alongside organizations like the Schmidt Ocean Institute and Ocean Exploration Trust to better understand our oceans and its processes. While space may be the final frontier, understanding our own planet helps scientists as they explore space and study how our universe came to be.
On #WorldOceansDay let’s explore how Earth’s ocean informs our research throughout the solar system.
“In interpreting what we see elsewhere in the solar system and universe, we always compare with phenomena that we already know of on Earth…We work from the familiar toward the unknown.” - Norman Kuring, NASA Goddard
We know of only one living planet: our own. As we move to the next stage in the search for alien life, the effort will require the expertise of scientists of all disciplines. However, the knowledge and tools NASA has developed to study life on Earth will also be one of the greatest assets to the quest.
The photo above shows what Earth would look like at a resolution of 3 pixels, the same that exoplanet-discovering missions would see. What should we look for, in the search of other planets like our own? What are the unmistakable signs of life, even if it comes in a form we don’t fully understand? Liquid water; every cell we know of – even bacteria around deep-sea vents that exist without sunlight – requires water.
Jupiter’s storms are mesmerizing in their beauty, captured in many gorgeous photos throughout the decades from missions like Voyager 1 and Juno. The ethereal swirls of Jupiter are the result of fluids in motion on a rotating body, which might come as a surprise, since its atmosphere is made of gas!
The eddies in Jupiter’s clouds appear very similar to those found in Earth’s ocean, like in the phytoplankton (or algae) bloom in the Baltic Sea, pictured above. The bloom was swept up in a vortex, just a part of how the ocean moves heat, carbon, and nutrients around the planet. Blooms like this, however, are not all beauty - they create “dead zones” in the areas where they grow, blooming and decaying at such a high rate that they consume all the oxygen in the water around them.
While the Arctic (North Pole) and the Antarctic (South Pole) are “polar opposites,” there is one huge difference between the North and South Poles– land mass. The Arctic is ocean surrounded by land, while the Antarctic is land surrounded by ocean. The North Pole is located in the middle of the Arctic Ocean amid waters that are almost permanently covered with constantly shifting sea ice.
By studying this sea ice, scientists can research its impact on Earth system and even formation processes on other bodies like Europa, an icy moon of Jupiter. For example, it is possible that the reddish surface features on Europa’s ice may have communicated with a global subsurface ocean layer during or after their formation.
As new missions are being developed, scientists are using Earth as a testbed. Just as prototypes for our Mars rovers made their trial runs on Earth’s deserts, researchers are testing both hypotheses and technology on our oceans and extreme environments.
NEEMO, our Extreme Environment Mission Operations project, is an analog mission that sends groups of astronauts, engineers and scientists to live in Aquarius, the world’s only undersea research station located off the Florida Keys, 62 feet (19 meters) below the surface. Much like space, the undersea world is a hostile, alien place for humans to live. NEEMO crew members, known as aquanauts, experience some of the same challenges there that they would on a distant asteroid, planet or moon.
Video credit: Deep Sea Robotics/Schmidt Ocean Institute and Mars Curiosity rover/NASA
From mapping the seafloor through bathymetry to collecting samples on the surface of Mars, researchers are utilizing new technologies more than ever to explore. Satellite and robotic technology allow us to explore where humans may not be able to– yet. They teach us valuable lessons about the extreme and changing environments, science, as well as provide a platform to test new technologies.
River deltas, the point where a river meets the ocean, are sites of rich sediment and incredible biodiversity. The nutrients that rivers carry to the coastlines make a fertile place for fish and shellfish to lay their eggs.
The Jezero crater on Mars (pictured in false-color on the right) has been selected as the Mars2020 landing site, and has a structure that looks much like a river delta here on Earth! Pictures from our Mars Global Surveyor orbiter show eroded ancient deposits of transported sediment long since hardened into interweaving, curved ridges of layered rock. This is one of many hints that Mars was once covered in an ancient ocean that had more water than the Arctic Ocean. Studying these deltas on Earth helps us spot them on other planets, and learning about the ocean that was once on Mars informs how our own formed.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Please enjoy my new sci-fi fantasy novel currently available on Amazon! Further than Before: Pathway to the Stars (2 book series) amazon.com/author/matthewopdyke #scififantasy #spaceopera #sciencefiction #fantasy #mustread #scifinovels #fantasynovels #biotechnology #nanotechnology #theoreticalphysics #physics #darkmatter #utopian #strongfemalelead https://www.instagram.com/p/Bo1Z9Xlg2uc/?utm_source=ig_tumblr_share&igshid=1rhtcswancrx1
A Cosmic Legacy: From Earth to the Stars (Extended Video)
"Our beautiful mother world ached for a reprieve from the injustices of many, courtesy of cultures and governance systems, that forgot how to love, how to be kind, how to include others, and how to think beyond the scope of greed and power, but within the visions of shared joy and well-being."
“For far too long people have lived for merely one shared goal, due to the daunting nature that life seems to bring. That goal may be a noble one, but it comes short of progression in and of itself and does not recognize the complexity of life and all of its nuances.
“This goal is survival through natural evolution. To merely survive, no matter the means, as noble as it may seem at first, will actually lead to the end of life and the end of humanity, whether through natural events or mankind’s apparent affinity toward death.
“It’s as if far too many people worship the almighty ‘mixed result’ rather than raise the quality of and joy in life through logic, study, innovation, and common sense, by enjoying what it can bring to the table, which will ultimately result in desired results.
“Finding cures for disease, both physiological and neurological, and possessing the ingenuity to innovate technologies as well as a pathway for humanity to quicken their pace for developing them will lead to preserving our Earth, our solar system, perhaps our Universe, and with it, each individual and humanity itself, as we travel to and push the limits of the Universe and its sustainability, trusting ourselves as we do so.”
Enjoy this First-Year-Anniversary compilation of all of my works in one title: A Cosmic Legacy: From Earth to the Stars
This title includes the entire Pathway to the Stars series: Part 1, Vesha Celeste Part 2, Eliza Williams Part 3, James Cooper Part 4, Universal Party Part 5, Amber Blythe Part 6, Erin Carter Part 7, Span of Influence Part 8, Dreamy & Deep Part 9-Allure & Spacecraft Part 10-Sky Taylor Part 11-A New Day Part 12-Alpha Andromedae
Eliza Williams and a host of friendly heroes tackle some of the most significant dilemmas of the day to bring humanity out and into the stars bearing a legacy we would be proud to share with other civilizations--a legacy of kindness, of mind-to-mind communication, of love, and of healing instead of harming. If we are to overcome the great expansion and the death of all life, we must overcome the smaller challenges to progress and focus on even greater ones. Working with her team diligently, Eliza will speed the pace of society in her world with the belief that beauty and untold potential are within every being. If we find ways to bring that out in ourselves and others, a future where we can breed longevity, a collective and high quality of life, augment the clarity of our minds, and innovate to span the Cosmos may be in our grasp.
Together with the organization Eliza Williams founded, called Pathway, she and her growing team will take us on a fantastical and Utopian journey to get us out and into the farthest reaches of space. There are dilemmas such as the physiological effects of space on each of us, as well as the need for longevity and a desire to still be able to visit loved ones following long journeys. Eliza and her team develop capabilities, so we can overcome the challenges ahead and are determined to stabilize a rocky economy, wipe away suffering, violence, disease, cartels, terrorism, and trafficking in persons. They work together to tame seismic activity, weather, and fires. She and her friends tackle ways to prevent extinction and provide solutions to quality of life concerns. They even consider the longevity of our Sun and our Earth's capacity to preserve life. Eliza tackles each of these issues to get us out, and into the stars, so we can begin our biggest quest--to help our Universe breathe ever so lightly.
No matter the challenge, there will always be greater pursuits! The saga will continue...
"A Cosmic Legacy" is a science fiction & fantasy novel, with a Space Opera flair to it. It is designed to edify, educate, and entertain young adults and scholars alike. Some of the specific topics covered include physiology, neurology, physics, biotechnology, nanotechnology, astronomy, politics, philosophy, and ethics. Preservation of the life-giving and sustaining capacities of our Earth and creation of environments conducive to life throughout the Solar System once thought to be impossible are primary goals. The ideas of kindness, with innovation rooted in well-being, longevity, where cellular health expresses youth and rejuvenation, optimizing the body to be able to live comfortably in austere space environments without adverse effects, and mind-to-mind communication bearing with it a legacy we'd be proud to share with distant civilizations with mutual goals of preserving our Universe can bring a beautiful future for all living beings.
Hardcover (Regular price $45) LCCN: 2019911854 | ISBN: 978-1-7333131-2-4 https://smile.amazon.com/dp/1733313125
Paperback (Regular price $35) LCCN: 2019909638 | ISBN: 978-1-7333131-1-7 https://smile.amazon.com/dp/1733313117
eBook (Regular price $10) LCCN: 2019909630 | ISBN: 978-1-7333131-0-0 | ASIN: B07V4W3MW9 https://smile.amazon.com/dp/B07V4W3MW9
#scifi #fantasy #spaceopera #newideology #wellbeing #longevity #neuroscience #neurotech #physiology #biology #biotech #physics #theoreticalphysics #nanotech #CRISPR #stemcellresearch #innovation #positivity #clarityofmind #author #matthewjopdyke #books #novels #ebooks #space #stars #astronomy #stem #science #ethicalrolemodels #universalethics
I hope the new year puts the light into our eyes, allows the embers of the fire to glow within our spirits, and brings clarity to our minds, willing and making good things happen that bring joy to our lives and the lives of others we meet along the way.
- Matt Opdyke
#scifiauthor
“There are a massive variety of star-forming regions nearby, and Hubble’s new Legacy ExtraGalactic UV Survey (LEGUS) is now the sharpest, most comprehensive one ever. By imaging 50 nearby, star-forming spiral and dwarf galaxies, astronomers can see how the galactic environment affects star-formation.”
Within galaxies, new stars are going to be formed from the existing population of gas. But how that gas collapses and forms stars, as well as the types, numbers, and locations of the stars that will arise, is highly dependent on the galactic environment into which they are born. Dwarf galaxies, for example, tend to form stars when a nearby gravitational interaction triggers them. These bursts occur periodically, leading to multiple populations of stars of different ages. Spirals, on the other hand, form their new stars mostly along the lines traced by their arms, where the dust and gas is densest. Thanks to the Hubble Space Telescope, we’re capable of finding these stars and resolving them individually, using a combination of optical and ultraviolet data.
The best part? These are individually resolved stars from well outside our own galaxy: in 50 independent ones. Here’s what Hubble’s new LEGUS survey is revealing.
In the works, #veshaceleste #authored by #sciencefictionfantasy #writer #matthewopdyke and #narrator #allisontaylor #strongfemalelead #neuroscience #physics #theoreticalphysics #biotechnology #physiology #nanotechnology #longevity #CRISPR #heforshe #politicalsciencefiction #furtherthanbefore #pathwaytothestars #audiobook https://www.instagram.com/p/BtQOmHlgle4/?utm_source=ig_tumblr_share&igshid=1jaexo15cdd91
All three versions (chill, rock, orchestra) ***** Further than Before: Pathway to the Stars, Part 1 -- Audible ***** “Nature and humanity can be amazing, but likewise, it can be brutal. Brutality, as far too many know it, is unnecessary if we consider and implement one thing, innovation with purpose—a good purpose is brutality’s ideal replacement, and it comes minus unnecessary misery. It’s starting to become clear to me now what it is that we can do and how we can do it.” - Eliza Williams to Yesha Alevtina (Further than Before: Pathway to the Stars, Part 1) ***** #books #sciencefictionbooks #SpaceOpera #scifi #ftbpathwaypublications #grahambessellieu #matthewjopdyke #politicalsciencefiction https://www.instagram.com/p/BxGgatnAtas/?igshid=1r6xgyjrd88m6
Thank you for your endless curiosity Dr. Hawking.
Space is a global frontier. That’s why we partner with nations all around the world to further the advancement of science and to push the boundaries of human exploration. With international collaboration, we have sent space telescopes to observe distant galaxies, established a sustainable, orbiting laboratory 254 miles above our planet’s surface and more! As we look forward to the next giant leaps in space exploration with our Artemis lunar exploration program, we will continue to go forth with international partnerships!
Teamwork makes the dream work. Here are a few of our notable collaborations:
Our Artemis lunar exploration program will send the first woman and the next man to the Moon by 2024. Using innovative technologies and international partnerships, we will explore more of the lunar surface than ever before and establish sustainable missions by 2028.
During these missions, the Orion spacecraft will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability and provide safe re-entry from deep space return velocities. The European Service Module, provided by the European Space Agency, will serve as the spacecraft’s powerhouse and supply it with electricity, propulsion, thermal control, air and water in space.
The Gateway, a small spaceship that will orbit the Moon, will be a home base for astronauts to maintain frequent and sustainable crewed missions to the lunar surface. With the help of a coalition of nations, this new spaceship will be assembled in space and built within the next decade.
Gateway already has far-reaching international support, with 14 space agencies agreeing on its importance in expanding humanity’s presence on the Moon, Mars and deeper into the solar system.
The International Space Station (ISS) is one of the most ambitious international collaborations ever attempted. Launched in 1998 and involving the U.S., Russia, Canada, Japan and the participating countries of the European Space Agency — the ISS has been the epitome of global cooperation for the benefit of humankind. The largest space station ever constructed, the orbital laboratory continues to bring together international flight crews, globally distributed launches, operations, training, engineering and the world’s scientific research community.
The Hubble Space Telescope, one of our greatest windows into worlds light-years away, was built with contributions from the European Space Agency (ESA).
ESA provided the original Faint Object Camera and solar panels, and continues to provide science operations support for the telescope.
The Deep Space Network (DSN) is an international array of giant radio antennas that span the world, with stations in the United States, Australia and Spain. The three facilities are equidistant approximately one-third of the way around the world from one another – to permit constant communication with spacecraft as our planet rotates. The network supports interplanetary spacecraft missions and a few that orbit Earth. It also provides radar and radio astronomy observations that improve our understanding of the solar system and the larger universe!
Information gathered today by robots on Mars will help get humans to the Red Planet in the not-too-distant future. Many of our Martian rovers – both past, present and future – are the products of a coalition of science teams distributed around the globe. Here are a few notable ones:
Curiosity Mars Rover
France: ChemCam, the rover’s laser instrument that can analyze rocks from more than 20 feet away
Russia: DAN, which looks for subsurface water and water locked in minerals
Spain: REMS, the rover’s weather station
InSight Mars Lander
France with contributions from Switzerland: SEIS, the first seismometer on the surface of another planet
Germany: HP3, the heatflow probe that will help us understand the interior structure of Mars
Spain: APSS, the lander’s weather station
Mars 2020 Rover
Norway: RIMFAX, a ground-penetrating radar
France: SuperCam, the laser instrument for remote science
Spain: MEDA, the rover’s weather station
We partner with space agencies around the globe on space-analog missions. Analog missions are field tests in locations that have physical similarities to the extreme space environments. They take astronauts to space-like environments to prepare as international teams for near-term and future exploration to asteroids, Mars and the Moon.
The European Space Agency hosts the Cooperative Adventure for Valuing and Exercising human behavior and performance Skills (CAVES) mission. The two week training prepares multicultural teams of astronauts to work safely and effectively in an environment where safety is critical. The mission is designed to foster skills such as communication, problem solving, decision-making and team dynamics.
We host our own analog mission, underwater! The NASA Extreme Environment Mission Operations (NEEMO) project sends international teams of astronauts, engineers and scientists to live in the world’s only undersea research station, Aquarius, for up to three weeks. Here, “aquanauts” as we call them, simulate living on a spacecraft and test spacewalk techniques for future space missions in hostile environments.
So, whether we’re collaborating as a science team around the globe, or shoulder-to-shoulder on a spacewalk, we are committed to working together with international partners for the benefit of all humanity!
If you’re interested in learning more about how the global space industry works together, check out our coverage of the 70th International Astronautical Congress (IAC) happening this week in Washington, D.C. IAC is a yearly gathering in which all space players meet to talk about the advancements and progress in exploration.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com